- home
- Advanced Search
- Energy Research
- Frontiers in Water
- Energy Research
- Frontiers in Water
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Mengqi Zhao; Mengqi Zhao; Jan Boll;The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Mengqi Zhao; Mengqi Zhao; Jan Boll;The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Mar 2023 United Kingdom, GermanyPublisher:Frontiers Media SA Enoch Bessah; Enoch Bessah; Emmanuel Donkor; Abdulganiy O. Raji; Olalekan J. Taiwo; Olusola O. Ololade; Alexandre Strapasson; Alexandre Strapasson; Shadrack K. Amponsah; Shadrack K. Amponsah; Sampson K. Agodzo;handle: 10044/1/99322
Climate change, especially the variability of rainfall patterns, poses a threat to maize production in Ghana. Some farmers harvest rainwater and store it for maize production to cope with unpredicted rainfall patterns. However, there are only a few studies on the adoption of rainwater harvesting for maize production. This study analyses the factors that influence farmers' decision to harvest rainwater for maize production in Ghana. A probit regression model is applied for the empirical analysis, using primary data from 344 maize farmers. The results show that 38% of the farmers harvest rainwater. We found that male farmers, farmers with primary education, large-scale farmers, experienced farmers, and those with access to weather information are more likely to harvest rainwater, while older farmers, those with limited access to extension services and labor, and those who perceive changes in rainfall pattern and amount of rainfall are associated with a lower probability to harvest rainwater for maize production. The findings suggest that enhancing farmers' access to weather information and extension services and improving awareness of climate change are needed to promote the adoption of rainwater harvesting. For gender inclusiveness in the adoption of rainwater harvesting, policies need to consider the needs of women.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 90visibility views 90 download downloads 112 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Mar 2023 United Kingdom, GermanyPublisher:Frontiers Media SA Enoch Bessah; Enoch Bessah; Emmanuel Donkor; Abdulganiy O. Raji; Olalekan J. Taiwo; Olusola O. Ololade; Alexandre Strapasson; Alexandre Strapasson; Shadrack K. Amponsah; Shadrack K. Amponsah; Sampson K. Agodzo;handle: 10044/1/99322
Climate change, especially the variability of rainfall patterns, poses a threat to maize production in Ghana. Some farmers harvest rainwater and store it for maize production to cope with unpredicted rainfall patterns. However, there are only a few studies on the adoption of rainwater harvesting for maize production. This study analyses the factors that influence farmers' decision to harvest rainwater for maize production in Ghana. A probit regression model is applied for the empirical analysis, using primary data from 344 maize farmers. The results show that 38% of the farmers harvest rainwater. We found that male farmers, farmers with primary education, large-scale farmers, experienced farmers, and those with access to weather information are more likely to harvest rainwater, while older farmers, those with limited access to extension services and labor, and those who perceive changes in rainfall pattern and amount of rainfall are associated with a lower probability to harvest rainwater for maize production. The findings suggest that enhancing farmers' access to weather information and extension services and improving awareness of climate change are needed to promote the adoption of rainwater harvesting. For gender inclusiveness in the adoption of rainwater harvesting, policies need to consider the needs of women.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 90visibility views 90 download downloads 112 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Master thesis 2021 United StatesPublisher:Frontiers Media SA Authors: Kaushal, Vinayak; Najafi, Mohammad; Entezarmahdi, Alimohammad;handle: 10106/25096
Gravity flow wastewater collection systems are comprised of sewer pipes and manholes. Failure of a manhole may have catastrophic consequences such as developing a sinkhole in the street and roadway, and at a minimum, wastewater flow will be blocked, and stream of the manhole will backup causing a sanitary sewer overflow (SSO). Improving structural conditions of a manhole is critical to minimize these types of failures. This paper considers the impact of several lining materials including cement mortar, epoxy, polyurethane, cured-in-place composites, and a multi-layer structure material on increasing the structural capabilities of deteriorated manholes. The tasks included in this research consist literature search and, preliminary laboratory and main testing of select manhole rehabilitation materials. A finite element analysis is included to complement the experiments. Several preliminary tests according to ASTM C-39 on coated concrete cylinders, and ASTM C-293 on lined concrete beams, were performed at UT Arlington's Center for Underground Infrastructure Research and Education (CUIRE) Laboratory. The test results showed significant increase in the performance of concrete samples under compression and flexure. A second round of testing was performed on 4-ft long, 24-in. diameter concrete pipe sections with 3-in. wall thickness manufactured according to ASTM C-76. These pipe sections were lined internally with the same materials as the preliminary tests, and tested according to ASTM C-497 under Three-Edge-Bearing testing. Using computer data acquisition system, strain gages and displacement extensometers, stress/strain data were measured. The results showed that tested No-Dig manhole rehabilitation materials can significantly improve structural performance of deteriorated manholes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Master thesis 2021 United StatesPublisher:Frontiers Media SA Authors: Kaushal, Vinayak; Najafi, Mohammad; Entezarmahdi, Alimohammad;handle: 10106/25096
Gravity flow wastewater collection systems are comprised of sewer pipes and manholes. Failure of a manhole may have catastrophic consequences such as developing a sinkhole in the street and roadway, and at a minimum, wastewater flow will be blocked, and stream of the manhole will backup causing a sanitary sewer overflow (SSO). Improving structural conditions of a manhole is critical to minimize these types of failures. This paper considers the impact of several lining materials including cement mortar, epoxy, polyurethane, cured-in-place composites, and a multi-layer structure material on increasing the structural capabilities of deteriorated manholes. The tasks included in this research consist literature search and, preliminary laboratory and main testing of select manhole rehabilitation materials. A finite element analysis is included to complement the experiments. Several preliminary tests according to ASTM C-39 on coated concrete cylinders, and ASTM C-293 on lined concrete beams, were performed at UT Arlington's Center for Underground Infrastructure Research and Education (CUIRE) Laboratory. The test results showed significant increase in the performance of concrete samples under compression and flexure. A second round of testing was performed on 4-ft long, 24-in. diameter concrete pipe sections with 3-in. wall thickness manufactured according to ASTM C-76. These pipe sections were lined internally with the same materials as the preliminary tests, and tested according to ASTM C-497 under Three-Edge-Bearing testing. Using computer data acquisition system, strain gages and displacement extensometers, stress/strain data were measured. The results showed that tested No-Dig manhole rehabilitation materials can significantly improve structural performance of deteriorated manholes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Veber Costa; André Rodrigues; Wilson Fernandes; Carlos de Mello; Qianjin Dong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Veber Costa; André Rodrigues; Wilson Fernandes; Carlos de Mello; Qianjin Dong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 08 Apr 2021 United Kingdom, Canada, CanadaPublisher:Frontiers Media SA Authors: Abhishek Gaur; Ronita Bardhan; Ronita Bardhan;Climate change is one of the biggest challenges that the global community faces. The changing climate may lead to the infrastructure bring exposed to unprecedented climate with an increase in the frequency and intensity of extreme weather events, such as more intense rain events and flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic impacts to the governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 08 Apr 2021 United Kingdom, Canada, CanadaPublisher:Frontiers Media SA Authors: Abhishek Gaur; Ronita Bardhan; Ronita Bardhan;Climate change is one of the biggest challenges that the global community faces. The changing climate may lead to the infrastructure bring exposed to unprecedented climate with an increase in the frequency and intensity of extreme weather events, such as more intense rain events and flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic impacts to the governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ColombiaPublisher:Frontiers Media SA Authors: Sánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; +2 AuthorsSánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; Montero, María Victoria; Vergara, María Virginia;handle: 10614/14704
Rivers are essential for life, there is an indissoluble relationship between the natural system and the human system. Aquatic ecosystems guarantee ecosystem services to the human system, on the other hand, the human system makes use of these services and as a result of this generates effects on the natural system. However, an over use of these services could adversely impact the natural system. Therefore, the recovery of rivers is a priority for the planet. This work describes the progress of the Commission for the recovery of the upper Cauca river basin as a collaborative governance for sustainability and water security in the region. The upper basin is between the Colombian massif in the department of Cauca and the municipality of Cartago in Valle del Cauca. It is an important natural, cultural, social, and economic resource of Colombia, but it presents a continuous deterioration of water availability, both in quantity and quality, limiting its use for human consumption and a reduction in biodiversity. This work shows that the Commission for the upper Cauca river basin recovery is a process in development. The Commission is an instance made up of public and private entities, which arises from the failure of the current model of water resource management in Colombia. The central problem is how to transcend short-term planning in administrations to long-term planning based on a shared vision. Collaborative governance is proposed as a recovery of the Cauca river based on the concept of bioculturality and the rights of nature, due to the deep relationship of unity between nature and the human species. The need to achieve a shared vision is highlighted, to act under the watershed vision with all the actors involved. In addition, minimal and conclusive indicators must be defined that society recognizes and that motivates it to advance in the recovery. The aquatic ecosystems recovery is a priority, understanding that the investments required for achieving this goal can also significantly contribute to sustainability and water security for the region.
Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ColombiaPublisher:Frontiers Media SA Authors: Sánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; +2 AuthorsSánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; Montero, María Victoria; Vergara, María Virginia;handle: 10614/14704
Rivers are essential for life, there is an indissoluble relationship between the natural system and the human system. Aquatic ecosystems guarantee ecosystem services to the human system, on the other hand, the human system makes use of these services and as a result of this generates effects on the natural system. However, an over use of these services could adversely impact the natural system. Therefore, the recovery of rivers is a priority for the planet. This work describes the progress of the Commission for the recovery of the upper Cauca river basin as a collaborative governance for sustainability and water security in the region. The upper basin is between the Colombian massif in the department of Cauca and the municipality of Cartago in Valle del Cauca. It is an important natural, cultural, social, and economic resource of Colombia, but it presents a continuous deterioration of water availability, both in quantity and quality, limiting its use for human consumption and a reduction in biodiversity. This work shows that the Commission for the upper Cauca river basin recovery is a process in development. The Commission is an instance made up of public and private entities, which arises from the failure of the current model of water resource management in Colombia. The central problem is how to transcend short-term planning in administrations to long-term planning based on a shared vision. Collaborative governance is proposed as a recovery of the Cauca river based on the concept of bioculturality and the rights of nature, due to the deep relationship of unity between nature and the human species. The need to achieve a shared vision is highlighted, to act under the watershed vision with all the actors involved. In addition, minimal and conclusive indicators must be defined that society recognizes and that motivates it to advance in the recovery. The aquatic ecosystems recovery is a priority, understanding that the investments required for achieving this goal can also significantly contribute to sustainability and water security for the region.
Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 NetherlandsPublisher:Copernicus GmbH Authors: Sandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; +2 AuthorsSandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; Vincent Beijk; Niko Wanders;Climate change has a large influence on the occurrence of extreme hydrological events. In this study we take advantage of two recent developments that allow for more detailed and local estimates of future hydrological extremes. New large climate ensembles (LE) now provide more insight into the occurrence of hydrological extremes as they offer order of magnitude more realizations of the future weather and thus floods and droughts. At the same time recent developments in Machine Learning (ML) based forecasting have enabled scientists to provide this LE information to a local scale relevant to water managers.In this study we combine LE, consisting of 2000 years of global data for scenarios representing present-day, 2 and 3 degrees warmer climate (1), together with a local, observation-based ML model framework for simulating hydrological extremes for the Netherlands (2, 3).We developed a new post-processing approach that allows us to use LE simulation data for local applications based on historical information. We test the application of the post-processing step based on historical simulations, before implementing in the different scenario runs.The discharge simulation results for the different scenarios show a clear seasonal cycle with increased low flow periods (both average duration and number of events) from summer till end of autumn (~45% August-October) and increased high flow periods for early spring (~43% February-April) looking at national scale, with the 3-degree warmer climate scenario showing the highest percentages for both (52.5% and 48.3% respectively). Regional differences can be seen in terms of shifts (low flows occurring earlier in the year) and range (higher/lower percentages). These trends can further be detangled into location specific results, due to the added value provided by the ML setup.We show that by combining the wealth of information from LE and the speed and accuracy of ML models we can advance the state-of-the-art when it comes to modelling and projecting hydrological extremes. The local modelling framework allows to simulate discharge under different climate change scenarios for national, regional and local scale assessments. The historically and locally trained models provide essential information for water management to be used in  long-term planning.1) Van der Wiel, K., Wanders, N., Selten, F. M., & Bierkens, M. F. P. (2019). Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophysical Research Letters, 46, 2093– 2102. 2) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2021). The potential of data driven approaches for quantifying hydrological extremes. Advances in Water Resources, 155, 104017.3) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2022). The suitability of a hybrid framework including data driven approaches for hydrological forecasting. Hydrology and Earth System Sciences Discussions, 1-20.
Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 NetherlandsPublisher:Copernicus GmbH Authors: Sandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; +2 AuthorsSandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; Vincent Beijk; Niko Wanders;Climate change has a large influence on the occurrence of extreme hydrological events. In this study we take advantage of two recent developments that allow for more detailed and local estimates of future hydrological extremes. New large climate ensembles (LE) now provide more insight into the occurrence of hydrological extremes as they offer order of magnitude more realizations of the future weather and thus floods and droughts. At the same time recent developments in Machine Learning (ML) based forecasting have enabled scientists to provide this LE information to a local scale relevant to water managers.In this study we combine LE, consisting of 2000 years of global data for scenarios representing present-day, 2 and 3 degrees warmer climate (1), together with a local, observation-based ML model framework for simulating hydrological extremes for the Netherlands (2, 3).We developed a new post-processing approach that allows us to use LE simulation data for local applications based on historical information. We test the application of the post-processing step based on historical simulations, before implementing in the different scenario runs.The discharge simulation results for the different scenarios show a clear seasonal cycle with increased low flow periods (both average duration and number of events) from summer till end of autumn (~45% August-October) and increased high flow periods for early spring (~43% February-April) looking at national scale, with the 3-degree warmer climate scenario showing the highest percentages for both (52.5% and 48.3% respectively). Regional differences can be seen in terms of shifts (low flows occurring earlier in the year) and range (higher/lower percentages). These trends can further be detangled into location specific results, due to the added value provided by the ML setup.We show that by combining the wealth of information from LE and the speed and accuracy of ML models we can advance the state-of-the-art when it comes to modelling and projecting hydrological extremes. The local modelling framework allows to simulate discharge under different climate change scenarios for national, regional and local scale assessments. The historically and locally trained models provide essential information for water management to be used in  long-term planning.1) Van der Wiel, K., Wanders, N., Selten, F. M., & Bierkens, M. F. P. (2019). Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophysical Research Letters, 46, 2093– 2102. 2) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2021). The potential of data driven approaches for quantifying hydrological extremes. Advances in Water Resources, 155, 104017.3) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2022). The suitability of a hybrid framework including data driven approaches for hydrological forecasting. Hydrology and Earth System Sciences Discussions, 1-20.
Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Lane, Rosanna A.; Kay, Alison L.;Climate change could intensify hydrological extremes, changing not just the magnitude but also the timing of flood and drought events. Understanding these potential future changes to hydrological extremes at the national level is critical to guide policy decisions and ensure adequate adaptation measures are put in place. Here, climate change impact on the magnitude and timing of extreme flows is modelled across Great Britain (GB), using an ensemble of climate data from the latest UK Climate Projections product (UKCP18) and a national grid-based hydrological model. All ensemble members show large reductions in low flows, of around −90 to −25% for 10-year return period low flows by 2050–2080. The direction of change for high flows is uncertain, but increases in 10-year return period high flows of over 9% are possible across most of the country. Simultaneous worsening of both extremes (i.e., a reduction in low flows combined with an increase in high flows) are projected in the west. Changes to flow timing are also projected; with mostly earlier annual maximum flows across Scotland, later annual maximum flows across England and Wales, and later low flows across GB. However, these changes are generally not statistically significant due to the high interannual variability of annual maximum/minimum flow timing. These results highlight the need for adaptation strategies that can cope with a wide range of future changes in hydrological extremes, and consider changes in the timing as well as magnitude.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Lane, Rosanna A.; Kay, Alison L.;Climate change could intensify hydrological extremes, changing not just the magnitude but also the timing of flood and drought events. Understanding these potential future changes to hydrological extremes at the national level is critical to guide policy decisions and ensure adequate adaptation measures are put in place. Here, climate change impact on the magnitude and timing of extreme flows is modelled across Great Britain (GB), using an ensemble of climate data from the latest UK Climate Projections product (UKCP18) and a national grid-based hydrological model. All ensemble members show large reductions in low flows, of around −90 to −25% for 10-year return period low flows by 2050–2080. The direction of change for high flows is uncertain, but increases in 10-year return period high flows of over 9% are possible across most of the country. Simultaneous worsening of both extremes (i.e., a reduction in low flows combined with an increase in high flows) are projected in the west. Changes to flow timing are also projected; with mostly earlier annual maximum flows across Scotland, later annual maximum flows across England and Wales, and later low flows across GB. However, these changes are generally not statistically significant due to the high interannual variability of annual maximum/minimum flow timing. These results highlight the need for adaptation strategies that can cope with a wide range of future changes in hydrological extremes, and consider changes in the timing as well as magnitude.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Haileslassie, Amare; Mekuria, Wolde; Uhlenbrook, Stefan; Ludi, Eva; Schmitter, Petra;handle: 10568/125173
The sustainable agricultural intensification (SAI) debate, partly rooted in discussions over the Green Revolution, was developed in the 1990s in the context of smallholder agriculture in Africa. In many Sub-Saharan African (SSA) countries, production is still largely rainfed, with the prevalence of significant yield gaps and rapid environmental degradation. Projections indicate that climate and demographic changes will further intensify the competition for freshwater resources. Currently, SAI is centered around predominantly rain-fed agricultural systems, often at a farm and plot scales. There has been increased attention to the improved role of agricultural water management (AWM) to address the daunting challenges of climate change, land degradation and food and nutritional insecurity in SSA. Nonetheless, the supporting frameworks and tools remain limited and do not connect the sustainability assessment and the development of intensification pathways (SIP) along multiple scales of the rainfed irrigation continuum. This paper reviews the gaps in concepts and practices of SAI and suggests a methodological framework to design context-specific and water-centered SIP for the SSA region. Accordingly, the proposed methodological framework demonstrates: (a) how to couple sustainability assessment methods to participatory SIPs design and adaptive management approach; (b) how contextualized sustainability domains and indicators can help in AWM centered SIP development; (c) the approaches to handle multiple scales and water-related indicators, the heterogeneity of biophysical and social settings when tailoring technology options to local contexts; and (d) the principles which enable the SIP designs to enable synergies and complementarities of SAI measures to reinforce the rainfed-irrigation continuum. This methodological framework allows researchers to integrate the sustainability assessment and SIP design, and guides policymakers and practitioners in planning, implementing and monitoring SAI initiatives (e.g., Framework for Irrigation Development and Agricultural Water Management in Africa) across multiple scales.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Haileslassie, Amare; Mekuria, Wolde; Uhlenbrook, Stefan; Ludi, Eva; Schmitter, Petra;handle: 10568/125173
The sustainable agricultural intensification (SAI) debate, partly rooted in discussions over the Green Revolution, was developed in the 1990s in the context of smallholder agriculture in Africa. In many Sub-Saharan African (SSA) countries, production is still largely rainfed, with the prevalence of significant yield gaps and rapid environmental degradation. Projections indicate that climate and demographic changes will further intensify the competition for freshwater resources. Currently, SAI is centered around predominantly rain-fed agricultural systems, often at a farm and plot scales. There has been increased attention to the improved role of agricultural water management (AWM) to address the daunting challenges of climate change, land degradation and food and nutritional insecurity in SSA. Nonetheless, the supporting frameworks and tools remain limited and do not connect the sustainability assessment and the development of intensification pathways (SIP) along multiple scales of the rainfed irrigation continuum. This paper reviews the gaps in concepts and practices of SAI and suggests a methodological framework to design context-specific and water-centered SIP for the SSA region. Accordingly, the proposed methodological framework demonstrates: (a) how to couple sustainability assessment methods to participatory SIPs design and adaptive management approach; (b) how contextualized sustainability domains and indicators can help in AWM centered SIP development; (c) the approaches to handle multiple scales and water-related indicators, the heterogeneity of biophysical and social settings when tailoring technology options to local contexts; and (d) the principles which enable the SIP designs to enable synergies and complementarities of SAI measures to reinforce the rainfed-irrigation continuum. This methodological framework allows researchers to integrate the sustainability assessment and SIP design, and guides policymakers and practitioners in planning, implementing and monitoring SAI initiatives (e.g., Framework for Irrigation Development and Agricultural Water Management in Africa) across multiple scales.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Frontiers Media SA Authors: Malamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; +12 AuthorsMalamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; Vanino, Silvia; Bea, Manuel; Babakos, Konstantinos; Chatzi, Anna; Fabiani, Stefano; Giordano, Raffaele; Kafkias, Petros; López-Moya, Estrella; Papadaskalopoulou, Christina; Portoghese, Ivan; Tassopoulos, Dimitris; Panagopoulos, Andreas;handle: 11589/283900
The formulation of effective policies to address both the present allocation and future conservation of natural resources in an integrated way remains an essential and challenging task. In this regard, managing the Nexus is increasingly seen as a priority in resource governance. Nature-based Solutions (NbS) are gradually being advocated to enhance sustainable and resilient Nexus management efforts. Designing and planning NbS tailored to local contexts requires a thorough understanding of the specific challenges and perspectives, as well as the divergent perspectives among stakeholders. This paper presents and analyses an effective stakeholder engagement strategy, based on the Learning & Action Alliances (LAA) scheme and aimed at identifying Water-Ecosystems-Food (WEF) Nexus challenges and selecting NbS in two case studies in the Mediterranean area (Greece and Italy). In total, 60 stakeholders were engaged in more than 40 events (workshops, seminars, open days, field trips etc.), while 25 individual interviews were also conducted. By fostering collaboration and stakeholder ownership, the methodology provided actionable insights and promoted context-specific solutions. The stakeholders proposed 24 NbSs in the Italian case study, most of which were related to agricultural landscape management, while in the Greek case study, 2 of the 4 top-ranked measures were NbSs. The findings underline the importance of participatory approaches and transdisciplinary tools in addressing Nexus challenges, offering a replicable framework for sustainable resource management in resource-stressed regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Frontiers Media SA Authors: Malamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; +12 AuthorsMalamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; Vanino, Silvia; Bea, Manuel; Babakos, Konstantinos; Chatzi, Anna; Fabiani, Stefano; Giordano, Raffaele; Kafkias, Petros; López-Moya, Estrella; Papadaskalopoulou, Christina; Portoghese, Ivan; Tassopoulos, Dimitris; Panagopoulos, Andreas;handle: 11589/283900
The formulation of effective policies to address both the present allocation and future conservation of natural resources in an integrated way remains an essential and challenging task. In this regard, managing the Nexus is increasingly seen as a priority in resource governance. Nature-based Solutions (NbS) are gradually being advocated to enhance sustainable and resilient Nexus management efforts. Designing and planning NbS tailored to local contexts requires a thorough understanding of the specific challenges and perspectives, as well as the divergent perspectives among stakeholders. This paper presents and analyses an effective stakeholder engagement strategy, based on the Learning & Action Alliances (LAA) scheme and aimed at identifying Water-Ecosystems-Food (WEF) Nexus challenges and selecting NbS in two case studies in the Mediterranean area (Greece and Italy). In total, 60 stakeholders were engaged in more than 40 events (workshops, seminars, open days, field trips etc.), while 25 individual interviews were also conducted. By fostering collaboration and stakeholder ownership, the methodology provided actionable insights and promoted context-specific solutions. The stakeholders proposed 24 NbSs in the Italian case study, most of which were related to agricultural landscape management, while in the Greek case study, 2 of the 4 top-ranked measures were NbSs. The findings underline the importance of participatory approaches and transdisciplinary tools in addressing Nexus challenges, offering a replicable framework for sustainable resource management in resource-stressed regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Mengqi Zhao; Mengqi Zhao; Jan Boll;The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Mengqi Zhao; Mengqi Zhao; Jan Boll;The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.983228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Mar 2023 United Kingdom, GermanyPublisher:Frontiers Media SA Enoch Bessah; Enoch Bessah; Emmanuel Donkor; Abdulganiy O. Raji; Olalekan J. Taiwo; Olusola O. Ololade; Alexandre Strapasson; Alexandre Strapasson; Shadrack K. Amponsah; Shadrack K. Amponsah; Sampson K. Agodzo;handle: 10044/1/99322
Climate change, especially the variability of rainfall patterns, poses a threat to maize production in Ghana. Some farmers harvest rainwater and store it for maize production to cope with unpredicted rainfall patterns. However, there are only a few studies on the adoption of rainwater harvesting for maize production. This study analyses the factors that influence farmers' decision to harvest rainwater for maize production in Ghana. A probit regression model is applied for the empirical analysis, using primary data from 344 maize farmers. The results show that 38% of the farmers harvest rainwater. We found that male farmers, farmers with primary education, large-scale farmers, experienced farmers, and those with access to weather information are more likely to harvest rainwater, while older farmers, those with limited access to extension services and labor, and those who perceive changes in rainfall pattern and amount of rainfall are associated with a lower probability to harvest rainwater for maize production. The findings suggest that enhancing farmers' access to weather information and extension services and improving awareness of climate change are needed to promote the adoption of rainwater harvesting. For gender inclusiveness in the adoption of rainwater harvesting, policies need to consider the needs of women.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 90visibility views 90 download downloads 112 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 21 Mar 2023 United Kingdom, GermanyPublisher:Frontiers Media SA Enoch Bessah; Enoch Bessah; Emmanuel Donkor; Abdulganiy O. Raji; Olalekan J. Taiwo; Olusola O. Ololade; Alexandre Strapasson; Alexandre Strapasson; Shadrack K. Amponsah; Shadrack K. Amponsah; Sampson K. Agodzo;handle: 10044/1/99322
Climate change, especially the variability of rainfall patterns, poses a threat to maize production in Ghana. Some farmers harvest rainwater and store it for maize production to cope with unpredicted rainfall patterns. However, there are only a few studies on the adoption of rainwater harvesting for maize production. This study analyses the factors that influence farmers' decision to harvest rainwater for maize production in Ghana. A probit regression model is applied for the empirical analysis, using primary data from 344 maize farmers. The results show that 38% of the farmers harvest rainwater. We found that male farmers, farmers with primary education, large-scale farmers, experienced farmers, and those with access to weather information are more likely to harvest rainwater, while older farmers, those with limited access to extension services and labor, and those who perceive changes in rainfall pattern and amount of rainfall are associated with a lower probability to harvest rainwater for maize production. The findings suggest that enhancing farmers' access to weather information and extension services and improving awareness of climate change are needed to promote the adoption of rainwater harvesting. For gender inclusiveness in the adoption of rainwater harvesting, policies need to consider the needs of women.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 90visibility views 90 download downloads 112 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/99322Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryPublikationsserver der Humboldt-Universität zu BerlinArticle . 2022 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.966966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Master thesis 2021 United StatesPublisher:Frontiers Media SA Authors: Kaushal, Vinayak; Najafi, Mohammad; Entezarmahdi, Alimohammad;handle: 10106/25096
Gravity flow wastewater collection systems are comprised of sewer pipes and manholes. Failure of a manhole may have catastrophic consequences such as developing a sinkhole in the street and roadway, and at a minimum, wastewater flow will be blocked, and stream of the manhole will backup causing a sanitary sewer overflow (SSO). Improving structural conditions of a manhole is critical to minimize these types of failures. This paper considers the impact of several lining materials including cement mortar, epoxy, polyurethane, cured-in-place composites, and a multi-layer structure material on increasing the structural capabilities of deteriorated manholes. The tasks included in this research consist literature search and, preliminary laboratory and main testing of select manhole rehabilitation materials. A finite element analysis is included to complement the experiments. Several preliminary tests according to ASTM C-39 on coated concrete cylinders, and ASTM C-293 on lined concrete beams, were performed at UT Arlington's Center for Underground Infrastructure Research and Education (CUIRE) Laboratory. The test results showed significant increase in the performance of concrete samples under compression and flexure. A second round of testing was performed on 4-ft long, 24-in. diameter concrete pipe sections with 3-in. wall thickness manufactured according to ASTM C-76. These pipe sections were lined internally with the same materials as the preliminary tests, and tested according to ASTM C-497 under Three-Edge-Bearing testing. Using computer data acquisition system, strain gages and displacement extensometers, stress/strain data were measured. The results showed that tested No-Dig manhole rehabilitation materials can significantly improve structural performance of deteriorated manholes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Master thesis 2021 United StatesPublisher:Frontiers Media SA Authors: Kaushal, Vinayak; Najafi, Mohammad; Entezarmahdi, Alimohammad;handle: 10106/25096
Gravity flow wastewater collection systems are comprised of sewer pipes and manholes. Failure of a manhole may have catastrophic consequences such as developing a sinkhole in the street and roadway, and at a minimum, wastewater flow will be blocked, and stream of the manhole will backup causing a sanitary sewer overflow (SSO). Improving structural conditions of a manhole is critical to minimize these types of failures. This paper considers the impact of several lining materials including cement mortar, epoxy, polyurethane, cured-in-place composites, and a multi-layer structure material on increasing the structural capabilities of deteriorated manholes. The tasks included in this research consist literature search and, preliminary laboratory and main testing of select manhole rehabilitation materials. A finite element analysis is included to complement the experiments. Several preliminary tests according to ASTM C-39 on coated concrete cylinders, and ASTM C-293 on lined concrete beams, were performed at UT Arlington's Center for Underground Infrastructure Research and Education (CUIRE) Laboratory. The test results showed significant increase in the performance of concrete samples under compression and flexure. A second round of testing was performed on 4-ft long, 24-in. diameter concrete pipe sections with 3-in. wall thickness manufactured according to ASTM C-76. These pipe sections were lined internally with the same materials as the preliminary tests, and tested according to ASTM C-497 under Three-Edge-Bearing testing. Using computer data acquisition system, strain gages and displacement extensometers, stress/strain data were measured. The results showed that tested No-Dig manhole rehabilitation materials can significantly improve structural performance of deteriorated manholes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Veber Costa; André Rodrigues; Wilson Fernandes; Carlos de Mello; Qianjin Dong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Frontiers Media SA Veber Costa; André Rodrigues; Wilson Fernandes; Carlos de Mello; Qianjin Dong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1585531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 08 Apr 2021 United Kingdom, Canada, CanadaPublisher:Frontiers Media SA Authors: Abhishek Gaur; Ronita Bardhan; Ronita Bardhan;Climate change is one of the biggest challenges that the global community faces. The changing climate may lead to the infrastructure bring exposed to unprecedented climate with an increase in the frequency and intensity of extreme weather events, such as more intense rain events and flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic impacts to the governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 08 Apr 2021 United Kingdom, Canada, CanadaPublisher:Frontiers Media SA Authors: Abhishek Gaur; Ronita Bardhan; Ronita Bardhan;Climate change is one of the biggest challenges that the global community faces. The changing climate may lead to the infrastructure bring exposed to unprecedented climate with an increase in the frequency and intensity of extreme weather events, such as more intense rain events and flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic impacts to the governments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.670950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ColombiaPublisher:Frontiers Media SA Authors: Sánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; +2 AuthorsSánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; Montero, María Victoria; Vergara, María Virginia;handle: 10614/14704
Rivers are essential for life, there is an indissoluble relationship between the natural system and the human system. Aquatic ecosystems guarantee ecosystem services to the human system, on the other hand, the human system makes use of these services and as a result of this generates effects on the natural system. However, an over use of these services could adversely impact the natural system. Therefore, the recovery of rivers is a priority for the planet. This work describes the progress of the Commission for the recovery of the upper Cauca river basin as a collaborative governance for sustainability and water security in the region. The upper basin is between the Colombian massif in the department of Cauca and the municipality of Cartago in Valle del Cauca. It is an important natural, cultural, social, and economic resource of Colombia, but it presents a continuous deterioration of water availability, both in quantity and quality, limiting its use for human consumption and a reduction in biodiversity. This work shows that the Commission for the upper Cauca river basin recovery is a process in development. The Commission is an instance made up of public and private entities, which arises from the failure of the current model of water resource management in Colombia. The central problem is how to transcend short-term planning in administrations to long-term planning based on a shared vision. Collaborative governance is proposed as a recovery of the Cauca river based on the concept of bioculturality and the rights of nature, due to the deep relationship of unity between nature and the human species. The need to achieve a shared vision is highlighted, to act under the watershed vision with all the actors involved. In addition, minimal and conclusive indicators must be defined that society recognizes and that motivates it to advance in the recovery. The aquatic ecosystems recovery is a priority, understanding that the investments required for achieving this goal can also significantly contribute to sustainability and water security for the region.
Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ColombiaPublisher:Frontiers Media SA Authors: Sánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; +2 AuthorsSánchez Torres, Luis Darío; Galvis Castaño, Alberto; Gandini, Mario Andrés; Almario, Gloria; Montero, María Victoria; Vergara, María Virginia;handle: 10614/14704
Rivers are essential for life, there is an indissoluble relationship between the natural system and the human system. Aquatic ecosystems guarantee ecosystem services to the human system, on the other hand, the human system makes use of these services and as a result of this generates effects on the natural system. However, an over use of these services could adversely impact the natural system. Therefore, the recovery of rivers is a priority for the planet. This work describes the progress of the Commission for the recovery of the upper Cauca river basin as a collaborative governance for sustainability and water security in the region. The upper basin is between the Colombian massif in the department of Cauca and the municipality of Cartago in Valle del Cauca. It is an important natural, cultural, social, and economic resource of Colombia, but it presents a continuous deterioration of water availability, both in quantity and quality, limiting its use for human consumption and a reduction in biodiversity. This work shows that the Commission for the upper Cauca river basin recovery is a process in development. The Commission is an instance made up of public and private entities, which arises from the failure of the current model of water resource management in Colombia. The central problem is how to transcend short-term planning in administrations to long-term planning based on a shared vision. Collaborative governance is proposed as a recovery of the Cauca river based on the concept of bioculturality and the rights of nature, due to the deep relationship of unity between nature and the human species. The need to achieve a shared vision is highlighted, to act under the watershed vision with all the actors involved. In addition, minimal and conclusive indicators must be defined that society recognizes and that motivates it to advance in the recovery. The aquatic ecosystems recovery is a priority, understanding that the investments required for achieving this goal can also significantly contribute to sustainability and water security for the region.
Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Repositorio Educativ... arrow_drop_down Repositorio Educativo Digital Universidad Autónoma de Occidente (RED UAO)Article . 2022License: CC BY NC NDFull-Text: https://hdl.handle.net/10614/14704Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.782164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 NetherlandsPublisher:Copernicus GmbH Authors: Sandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; +2 AuthorsSandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; Vincent Beijk; Niko Wanders;Climate change has a large influence on the occurrence of extreme hydrological events. In this study we take advantage of two recent developments that allow for more detailed and local estimates of future hydrological extremes. New large climate ensembles (LE) now provide more insight into the occurrence of hydrological extremes as they offer order of magnitude more realizations of the future weather and thus floods and droughts. At the same time recent developments in Machine Learning (ML) based forecasting have enabled scientists to provide this LE information to a local scale relevant to water managers.In this study we combine LE, consisting of 2000 years of global data for scenarios representing present-day, 2 and 3 degrees warmer climate (1), together with a local, observation-based ML model framework for simulating hydrological extremes for the Netherlands (2, 3).We developed a new post-processing approach that allows us to use LE simulation data for local applications based on historical information. We test the application of the post-processing step based on historical simulations, before implementing in the different scenario runs.The discharge simulation results for the different scenarios show a clear seasonal cycle with increased low flow periods (both average duration and number of events) from summer till end of autumn (~45% August-October) and increased high flow periods for early spring (~43% February-April) looking at national scale, with the 3-degree warmer climate scenario showing the highest percentages for both (52.5% and 48.3% respectively). Regional differences can be seen in terms of shifts (low flows occurring earlier in the year) and range (higher/lower percentages). These trends can further be detangled into location specific results, due to the added value provided by the ML setup.We show that by combining the wealth of information from LE and the speed and accuracy of ML models we can advance the state-of-the-art when it comes to modelling and projecting hydrological extremes. The local modelling framework allows to simulate discharge under different climate change scenarios for national, regional and local scale assessments. The historically and locally trained models provide essential information for water management to be used in  long-term planning.1) Van der Wiel, K., Wanders, N., Selten, F. M., & Bierkens, M. F. P. (2019). Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophysical Research Letters, 46, 2093– 2102. 2) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2021). The potential of data driven approaches for quantifying hydrological extremes. Advances in Water Resources, 155, 104017.3) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2022). The suitability of a hybrid framework including data driven approaches for hydrological forecasting. Hydrology and Earth System Sciences Discussions, 1-20.
Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 NetherlandsPublisher:Copernicus GmbH Authors: Sandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; +2 AuthorsSandra M. Hauswirth; Karin van der Wiel; Marc F. P. Bierkens; Marc F. P. Bierkens; Vincent Beijk; Niko Wanders;Climate change has a large influence on the occurrence of extreme hydrological events. In this study we take advantage of two recent developments that allow for more detailed and local estimates of future hydrological extremes. New large climate ensembles (LE) now provide more insight into the occurrence of hydrological extremes as they offer order of magnitude more realizations of the future weather and thus floods and droughts. At the same time recent developments in Machine Learning (ML) based forecasting have enabled scientists to provide this LE information to a local scale relevant to water managers.In this study we combine LE, consisting of 2000 years of global data for scenarios representing present-day, 2 and 3 degrees warmer climate (1), together with a local, observation-based ML model framework for simulating hydrological extremes for the Netherlands (2, 3).We developed a new post-processing approach that allows us to use LE simulation data for local applications based on historical information. We test the application of the post-processing step based on historical simulations, before implementing in the different scenario runs.The discharge simulation results for the different scenarios show a clear seasonal cycle with increased low flow periods (both average duration and number of events) from summer till end of autumn (~45% August-October) and increased high flow periods for early spring (~43% February-April) looking at national scale, with the 3-degree warmer climate scenario showing the highest percentages for both (52.5% and 48.3% respectively). Regional differences can be seen in terms of shifts (low flows occurring earlier in the year) and range (higher/lower percentages). These trends can further be detangled into location specific results, due to the added value provided by the ML setup.We show that by combining the wealth of information from LE and the speed and accuracy of ML models we can advance the state-of-the-art when it comes to modelling and projecting hydrological extremes. The local modelling framework allows to simulate discharge under different climate change scenarios for national, regional and local scale assessments. The historically and locally trained models provide essential information for water management to be used in  long-term planning.1) Van der Wiel, K., Wanders, N., Selten, F. M., & Bierkens, M. F. P. (2019). Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophysical Research Letters, 46, 2093– 2102. 2) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2021). The potential of data driven approaches for quantifying hydrological extremes. Advances in Water Resources, 155, 104017.3) Hauswirth, S. M., Bierkens, M. F., Beijk, V., & Wanders, N. (2022). The suitability of a hybrid framework including data driven approaches for hydrological forecasting. Hydrology and Earth System Sciences Discussions, 1-20.
Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Water arrow_drop_down Pure Utrecht UniversityConference object . 2023License: CC BYData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-7677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Lane, Rosanna A.; Kay, Alison L.;Climate change could intensify hydrological extremes, changing not just the magnitude but also the timing of flood and drought events. Understanding these potential future changes to hydrological extremes at the national level is critical to guide policy decisions and ensure adequate adaptation measures are put in place. Here, climate change impact on the magnitude and timing of extreme flows is modelled across Great Britain (GB), using an ensemble of climate data from the latest UK Climate Projections product (UKCP18) and a national grid-based hydrological model. All ensemble members show large reductions in low flows, of around −90 to −25% for 10-year return period low flows by 2050–2080. The direction of change for high flows is uncertain, but increases in 10-year return period high flows of over 9% are possible across most of the country. Simultaneous worsening of both extremes (i.e., a reduction in low flows combined with an increase in high flows) are projected in the west. Changes to flow timing are also projected; with mostly earlier annual maximum flows across Scotland, later annual maximum flows across England and Wales, and later low flows across GB. However, these changes are generally not statistically significant due to the high interannual variability of annual maximum/minimum flow timing. These results highlight the need for adaptation strategies that can cope with a wide range of future changes in hydrological extremes, and consider changes in the timing as well as magnitude.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | UK Status, Change and Pro...UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Lane, Rosanna A.; Kay, Alison L.;Climate change could intensify hydrological extremes, changing not just the magnitude but also the timing of flood and drought events. Understanding these potential future changes to hydrological extremes at the national level is critical to guide policy decisions and ensure adequate adaptation measures are put in place. Here, climate change impact on the magnitude and timing of extreme flows is modelled across Great Britain (GB), using an ensemble of climate data from the latest UK Climate Projections product (UKCP18) and a national grid-based hydrological model. All ensemble members show large reductions in low flows, of around −90 to −25% for 10-year return period low flows by 2050–2080. The direction of change for high flows is uncertain, but increases in 10-year return period high flows of over 9% are possible across most of the country. Simultaneous worsening of both extremes (i.e., a reduction in low flows combined with an increase in high flows) are projected in the west. Changes to flow timing are also projected; with mostly earlier annual maximum flows across Scotland, later annual maximum flows across England and Wales, and later low flows across GB. However, these changes are generally not statistically significant due to the high interannual variability of annual maximum/minimum flow timing. These results highlight the need for adaptation strategies that can cope with a wide range of future changes in hydrological extremes, and consider changes in the timing as well as magnitude.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.684982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Haileslassie, Amare; Mekuria, Wolde; Uhlenbrook, Stefan; Ludi, Eva; Schmitter, Petra;handle: 10568/125173
The sustainable agricultural intensification (SAI) debate, partly rooted in discussions over the Green Revolution, was developed in the 1990s in the context of smallholder agriculture in Africa. In many Sub-Saharan African (SSA) countries, production is still largely rainfed, with the prevalence of significant yield gaps and rapid environmental degradation. Projections indicate that climate and demographic changes will further intensify the competition for freshwater resources. Currently, SAI is centered around predominantly rain-fed agricultural systems, often at a farm and plot scales. There has been increased attention to the improved role of agricultural water management (AWM) to address the daunting challenges of climate change, land degradation and food and nutritional insecurity in SSA. Nonetheless, the supporting frameworks and tools remain limited and do not connect the sustainability assessment and the development of intensification pathways (SIP) along multiple scales of the rainfed irrigation continuum. This paper reviews the gaps in concepts and practices of SAI and suggests a methodological framework to design context-specific and water-centered SIP for the SSA region. Accordingly, the proposed methodological framework demonstrates: (a) how to couple sustainability assessment methods to participatory SIPs design and adaptive management approach; (b) how contextualized sustainability domains and indicators can help in AWM centered SIP development; (c) the approaches to handle multiple scales and water-related indicators, the heterogeneity of biophysical and social settings when tailoring technology options to local contexts; and (d) the principles which enable the SIP designs to enable synergies and complementarities of SAI measures to reinforce the rainfed-irrigation continuum. This methodological framework allows researchers to integrate the sustainability assessment and SIP design, and guides policymakers and practitioners in planning, implementing and monitoring SAI initiatives (e.g., Framework for Irrigation Development and Agricultural Water Management in Africa) across multiple scales.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Haileslassie, Amare; Mekuria, Wolde; Uhlenbrook, Stefan; Ludi, Eva; Schmitter, Petra;handle: 10568/125173
The sustainable agricultural intensification (SAI) debate, partly rooted in discussions over the Green Revolution, was developed in the 1990s in the context of smallholder agriculture in Africa. In many Sub-Saharan African (SSA) countries, production is still largely rainfed, with the prevalence of significant yield gaps and rapid environmental degradation. Projections indicate that climate and demographic changes will further intensify the competition for freshwater resources. Currently, SAI is centered around predominantly rain-fed agricultural systems, often at a farm and plot scales. There has been increased attention to the improved role of agricultural water management (AWM) to address the daunting challenges of climate change, land degradation and food and nutritional insecurity in SSA. Nonetheless, the supporting frameworks and tools remain limited and do not connect the sustainability assessment and the development of intensification pathways (SIP) along multiple scales of the rainfed irrigation continuum. This paper reviews the gaps in concepts and practices of SAI and suggests a methodological framework to design context-specific and water-centered SIP for the SSA region. Accordingly, the proposed methodological framework demonstrates: (a) how to couple sustainability assessment methods to participatory SIPs design and adaptive management approach; (b) how contextualized sustainability domains and indicators can help in AWM centered SIP development; (c) the approaches to handle multiple scales and water-related indicators, the heterogeneity of biophysical and social settings when tailoring technology options to local contexts; and (d) the principles which enable the SIP designs to enable synergies and complementarities of SAI measures to reinforce the rainfed-irrigation continuum. This methodological framework allows researchers to integrate the sustainability assessment and SIP design, and guides policymakers and practitioners in planning, implementing and monitoring SAI initiatives (e.g., Framework for Irrigation Development and Agricultural Water Management in Africa) across multiple scales.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125173Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2022.747610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Frontiers Media SA Authors: Malamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; +12 AuthorsMalamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; Vanino, Silvia; Bea, Manuel; Babakos, Konstantinos; Chatzi, Anna; Fabiani, Stefano; Giordano, Raffaele; Kafkias, Petros; López-Moya, Estrella; Papadaskalopoulou, Christina; Portoghese, Ivan; Tassopoulos, Dimitris; Panagopoulos, Andreas;handle: 11589/283900
The formulation of effective policies to address both the present allocation and future conservation of natural resources in an integrated way remains an essential and challenging task. In this regard, managing the Nexus is increasingly seen as a priority in resource governance. Nature-based Solutions (NbS) are gradually being advocated to enhance sustainable and resilient Nexus management efforts. Designing and planning NbS tailored to local contexts requires a thorough understanding of the specific challenges and perspectives, as well as the divergent perspectives among stakeholders. This paper presents and analyses an effective stakeholder engagement strategy, based on the Learning & Action Alliances (LAA) scheme and aimed at identifying Water-Ecosystems-Food (WEF) Nexus challenges and selecting NbS in two case studies in the Mediterranean area (Greece and Italy). In total, 60 stakeholders were engaged in more than 40 events (workshops, seminars, open days, field trips etc.), while 25 individual interviews were also conducted. By fostering collaboration and stakeholder ownership, the methodology provided actionable insights and promoted context-specific solutions. The stakeholders proposed 24 NbSs in the Italian case study, most of which were related to agricultural landscape management, while in the Greek case study, 2 of the 4 top-ranked measures were NbSs. The findings underline the importance of participatory approaches and transdisciplinary tools in addressing Nexus challenges, offering a replicable framework for sustainable resource management in resource-stressed regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Frontiers Media SA Authors: Malamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; +12 AuthorsMalamataris, Dimitrios; Pisinaras, Vassilios; Pagano, Alessandro; Baratella, Valentina; Vanino, Silvia; Bea, Manuel; Babakos, Konstantinos; Chatzi, Anna; Fabiani, Stefano; Giordano, Raffaele; Kafkias, Petros; López-Moya, Estrella; Papadaskalopoulou, Christina; Portoghese, Ivan; Tassopoulos, Dimitris; Panagopoulos, Andreas;handle: 11589/283900
The formulation of effective policies to address both the present allocation and future conservation of natural resources in an integrated way remains an essential and challenging task. In this regard, managing the Nexus is increasingly seen as a priority in resource governance. Nature-based Solutions (NbS) are gradually being advocated to enhance sustainable and resilient Nexus management efforts. Designing and planning NbS tailored to local contexts requires a thorough understanding of the specific challenges and perspectives, as well as the divergent perspectives among stakeholders. This paper presents and analyses an effective stakeholder engagement strategy, based on the Learning & Action Alliances (LAA) scheme and aimed at identifying Water-Ecosystems-Food (WEF) Nexus challenges and selecting NbS in two case studies in the Mediterranean area (Greece and Italy). In total, 60 stakeholders were engaged in more than 40 events (workshops, seminars, open days, field trips etc.), while 25 individual interviews were also conducted. By fostering collaboration and stakeholder ownership, the methodology provided actionable insights and promoted context-specific solutions. The stakeholders proposed 24 NbSs in the Italian case study, most of which were related to agricultural landscape management, while in the Greek case study, 2 of the 4 top-ranked measures were NbSs. The findings underline the importance of participatory approaches and transdisciplinary tools in addressing Nexus challenges, offering a replicable framework for sustainable resource management in resource-stressed regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2025.1469762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu