- home
- Advanced Search
- Energy Research
- 13. Climate action
- Remote Sensing
- Energy Research
- 13. Climate action
- Remote Sensing
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/rs14246296
Solar photovoltaic (PV) power generation is a vital renewable energy to achieve carbon neutrality. Previous studies which explored mapping PV using open satellite data mainly focus in remote areas. However, the complexity of land cover types can bring much difficulty in PV identification. This study investigated detecting PV in diverse landscapes using freely accessible remote sensing data, aiming to evaluate the transferability of PV detection between rural and urbanized coastal area. We developed a random forest-based PV classifier on Google Earth Engine in two provinces of China. Various features including Sentinel-2 reflectance, Sentinel-1 polarization, spectral indices and their corresponding textures were constructed. Thereafter, features with high permutation importance were retained. Three classification schemes with different training and test samples were, respectively, conducted. Finally, the VIIRS nighttime light data were utilized to refine the initial results. Manually collected samples and existing PV database were used to evaluate the accuracy of our method. The results revealed that the top three important features in detecting PV were the sum average texture of three bands (NDBI, VV, and VH). We found the classifier trained in highly urbanized coastal landscape with multiple PV types was more transferable (OA = 97.24%, kappa = 0.94), whereas the classifier trained in rural landscape with simple PV types was erroneous when applied vice versa (OA = 68.84%, kappa = 0.44). The highest accuracy was achieved when using training samples from both regions as expected (OA = 98.90%, kappa = 0.98). Our method recalled more than 94% PV in most existing databases. In particular, our method has a stronger detection ability of PV installed above water surface, which is often missing in existing PV databases. From this study, we found two main types of errors in mapping PV, including the bare rocks and mountain shadows in natural landscapes and the roofing polyethylene materials in urban settlements. In conclusion, the PV classifier trained in highly urbanized coastal landscapes with multiple PV types is more accurate than the classifier trained in rural landscapes. The VIIRS nighttime light data contribute greatly to remove PV detection errors caused by bare rocks and mountain shadows. The finding in our study can provide reference values for future large area PV monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14246296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14246296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Jianyong Xiao;Binggeng Xie;
Kaichun Zhou;Binggeng Xie
Binggeng Xie in OpenAIREJunhan Li;
+2 AuthorsJunhan Li
Junhan Li in OpenAIREJianyong Xiao;Binggeng Xie;
Kaichun Zhou;Binggeng Xie
Binggeng Xie in OpenAIREJunhan Li;
Jing Xie;Junhan Li
Junhan Li in OpenAIREChao Liang;
Chao Liang
Chao Liang in OpenAIREdoi: 10.3390/rs14174296
Ecosystem water use efficiency (WUE) plays an important role in maintaining the carbon assimilation–water transpiration balance in ecosystems. However, spatiotemporal changes in WUE in the subtropical region of China (STC) and the impact of driving forces remain unclear. In this study, we analyzed the spatiotemporal variation in WUE in the STC and used ridge regression combined with path analysis to identify direct and indirect effects of climate change, vegetation growth, and elevated atmospheric CO2 concentration (Ca) on the interannual trend in WUE. We then quantified the actual and relative contributions of these drivers to WUE change based on the sensitivity of these variables on WUE and the trends of the variables themselves. Results reveal a mean WUE of 1.57 g C/m2/mm in the STC. The annual WUE series showed a descending trend with a decline rate of 0.0006 g C/m2/mm/year. The annual average temperature (MAT) and leaf area index (LAI) had strong positive direct effects on the WUE, while the vapor pressure deficit (VPD) had a strong negative direct effect. Opposite direct and indirect effects offset each other, but overall there was a total positive effect of Ca and VPD on WUE. In terms of actual contribution, LAI, Ca, and VPD were the main driving factors; LAI caused WUE to increase by 0.0026 g C/m2/mm/year, while Ca and VPD caused WUE to decrease by 0.0021 and 0.0012 g C/m2/mm/year, respectively. In terms of relative contribution, LAI dominated the WUE trend, although Ca and VPD were also important factors. Other drivers contributed less to the WUE trend. The results of this study have implications for ecological management and restoration under environmental climate change conditions in subtropical regions worldwide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14174296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:MDPI AG Dominique Carrer; Xavier Ceamanos; Suman Moparthy; Chloe Vincent; Sandra C. Freitas;Isabel Trigo;
Isabel Trigo
Isabel Trigo in OpenAIRESeveral studies have shown that changes in incoming solar radiation and variations of the diffuse fraction can significantly modify the vegetation carbon uptake. Hence, monitoring the incoming solar radiation at large scale and with high temporal frequency is crucial for this reason along with many others. The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility for Land Surface Analysis (LSA SAF) has operationally disseminated in near real time estimates of the downwelling shortwave radiation at the surface since 2005. This product is derived from observations provided by the SEVIRI instrument onboard the Meteosat Second Generation series of geostationary satellites, which covers Europe, Africa, the Middle East, and part of South America. However, near real time generation of the diffuse fraction at the surface level has only recently been initiated. The main difficulty towards achieving this goal was the general lack of accurate information on the aerosol particles in the atmosphere. This limitation is less important nowadays thanks to the improvements in atmospheric numerical models. This study presents an upgrade of the LSA SAF operational retrieval method, which provides the simultaneous estimation of the incoming solar radiation and its diffuse fraction from the satellite every 15 min. The upgrade includes a comprehensive representation of the influence of aerosols based on physical approximations of the radiative transfer within an atmosphere-surface associated medium. This article explains the retrieval method, discusses its limitations and differences with the previous method, and details the characteristics of the output products. A companion article will focus on the evaluation of the products against independent measurements of solar radiation. Finally, the access to the source code is provided through an open access platform in order to share the expertise on the satellite retrieval of this variable with the community.
Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11212532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down https://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11212532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/rs14164096
COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere and Climate- 2) dry temperature profile data from December 2019 to November 2021 are used to study stratospheric gravity waves (GWs) in the Asian monsoon region. The stratosphere between 20 and 50 km is divided into the lower, middle, and high layers based on the vertical distribution of the mean potential energy (Ep) and the horizontal distribution of GW Ep in these three layers, and their seasonal changes are analyzed. The source and propagating mechanism of GWs in middle latitudes in winter are revealed. The results show that GWs in the stratosphere have distinct distribution features during different seasons. The significant Ep in winter appears mainly in middle latitudes north of 30°N, whereas in summer, it appears in the low latitudes south of 30°N. There are significant areas of GW activity in both low and middle latitudes in spring and autumn, but their intensity is significantly weaker than in winter and summer. Areas with significant GWs and the seasonal variation of their intensity are accompanied by the Asian monsoon activity. In winter, there is a northward and upward propagating column for GWs above the Sichuan Basin, and in summer, there is an eastward and upward propagating column for GWs in the zonal band 15–25°N. The occurrence of GWs in northwestern China in winter is the result of the subtropical jet stream and topography. Once GWs enter the stratosphere, they are regulated by the winter stratospheric environment, and the GWs acquire a northerly component by the wind shear. The meridional wind shear in the background field is an important factor affecting the development and propagation of GWs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14164096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14164096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors:Dandan Xu;
Qinghong Geng; Changshan Jin; Zikun Xu; +1 AuthorsDandan Xu
Dandan Xu in OpenAIREdoi: 10.3390/rs12182890
The alpine tree line ecotone, reflecting interactions between climate and ecology, is very sensitive to climate change. To identify tree line responses to climate change, including intensity and local variations in tree line advancement, the use of Landsat images with long-term data series and fine spatial resolution is an option. However, it is a challenge to extract tree line data from Landsat images due to classification issues with outliers and temporal inconsistency. More importantly, direct classification results in sharp boundaries between forest and non-forest pixels/segments instead of representing the tree line ecotone (three ecological regions—tree species line, tree line, and timber line—are closely related to the tree line ecotone and are all significant for ecological processes). Therefore, it is important to develop a method that is able to accurately extract the tree line from Landsat images with a high temporal consistency and to identify the appropriate ecological boundary. In this study, a new methodology was developed based on the concept of a local indicator of spatial autocorrelation (LISA) to extract the tree line automatically from Landsat images. Tree line responses to climate change from 1987 to 2018 in Wuyishan National Park, China, were evaluated, and topographic effects on local variations in tree line advancement were explored. The findings supported the methodology based on the LISA concept as a valuable classifier for assessing the local spatial clusters of alpine meadows from images acquired in nongrowing seasons. The results showed that the automatically extracted line from Landsat images was the timber line due to the restriction in spatial autocorrelation. The results also indicate that parts of the tree line in the study area shifted upward vertically by 50 m under a 1 °C temperature increase during the period from 1987 to 2018, with local variations influenced by slope, elevation, and interactions with aspect. Our study contributes a novel result regarding the response of the alpine tree line to global warming in a subtropical region. Our method for automatic tree line extraction can provide fundamental information for ecosystem managers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12182890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12182890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Xiaoai Dai;
Xiaoai Dai
Xiaoai Dai in OpenAIREWenjie Fan;
Wenjie Fan
Wenjie Fan in OpenAIREYunfeng Shan;
Yu Gao; +13 AuthorsYunfeng Shan
Yunfeng Shan in OpenAIREXiaoai Dai;
Xiaoai Dai
Xiaoai Dai in OpenAIREWenjie Fan;
Wenjie Fan
Wenjie Fan in OpenAIREYunfeng Shan;
Yu Gao;Yunfeng Shan
Yunfeng Shan in OpenAIREChao Liu;
Ruihua Nie;Chao Liu
Chao Liu in OpenAIREDonghui Zhang;
Donghui Zhang
Donghui Zhang in OpenAIREWeile Li;
Weile Li
Weile Li in OpenAIRELifu Zhang;
Xuejian Sun; Tiegang Liu;Lifu Zhang
Lifu Zhang in OpenAIREZhengli Yang;
Xiao Fu; Lei Ma; Shuneng Liang; Youlin Wang;Zhengli Yang
Zhengli Yang in OpenAIREHeng Lu;
Heng Lu
Heng Lu in OpenAIREdoi: 10.3390/rs14153748
Global climate changes have a great impact on terrestrial ecosystems. Vegetation is an important component of ecosystems, and the impact of climate changes on ecosystems can be determined by studying vegetation phenology. Vegetation phenology refers to the phenomenon of periodic changes in plants, such as germination, flowering and defoliation, with the seasonal change of climate during the annual growth cycle, and it is considered to be one of the most efficient indicators to monitor climate changes. This study collected the global land surface satellite leaf area index (GLASS LAI) products, meteorological data sets and other auxiliary data in the Three-River headwaters region from 2001 to 2018; rebuilt the vegetation LAI annual growth curve by using the asymmetric Gaussian (A-G) fitting method and extracted the three vegetation phenological data (including Start of Growing Season (SOS), End of Growing Season (EOS) and Length of Growing Season (LOS)) by the maximum slope method. In addition, it also integrated Sen’s trend analysis method and the Mann-Kendall test method to explore the temporal and spatial variation trends of vegetation phenology and explored the relationship between vegetation phenology and meteorological factors through a partial correlation analysis and multiple linear regression models. The results of this study showed that: (1) the SOS of vegetation in the Three-River headwaters region is concentrated between the beginning and the end of May, with an interannual change rate of −0.14 d/a. The EOS of vegetation is concentrated between the beginning and the middle of October, with an interannual change rate of 0.02 d/a. The LOS of vegetation is concentrated between 4 and 5 months, with an interannual change rate of 0.21 d/a. (2) Through the comparison and verification with the vegetation phenological data observed at the stations, it was found that the precision of the vegetation phonology extracted by the A-G method and the maximum slope method based on GLASS LAI data is higher (MAE is 7.6 d, RMSE is 8.4 d) and slightly better than the vegetation phenological data (MAE is 9.9 d, RMSE is 10.9 d) extracted based on the moderate resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) product. (3) The correlation between the SOS of vegetation and the average temperature in March–May is the strongest. The SOS of vegetation is advanced by 1.97 days for every 1 °C increase in the average temperature in March–May; the correlation between the EOS of vegetation and the cumulative sunshine duration in August–October is the strongest. The EOS of vegetation is advanced by 0.07 days for every 10-h increase in the cumulative sunshine duration in August–October.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14153748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14153748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors:Patricio Bohorquez;
Patricio Bohorquez
Patricio Bohorquez in OpenAIREJosé Del Moral-Erencia;
José Del Moral-Erencia
José Del Moral-Erencia in OpenAIREdoi: 10.3390/rs9070727
Reduction in channel capacity can trigger an increase in flood hazard over time. It represents a geomorphic driver that competes against its hydrologic counterpart where streamflow decreases. We show that this situation arose in the Guadalquivir River (Southern Spain) after impoundment. We identify the physical parameters that raised flood hazard in the period 1997–2013 with respect to past years 1910–1996 and quantify their effects by accounting for temporal trends in both streamflow and channel capacity. First, we collect historical hydrological data to lengthen records of extreme flooding events since 1910. Next, inundated areas and grade lines across a 70 km stretch of up to 2 km wide floodplain are delimited from Landsat and TerraSAR-X satellite images of the most recent floods (2009–2013). Flooded areas are also computed using standard two-dimensional Saint-Venant equations. Simulated stages are verified locally and across the whole domain with collected hydrological data and satellite images, respectively. The thoughtful analysis of flooding and geomorphic dynamics over multi-decadal timescales illustrates that non-stationary channel adaptation to river impoundment decreased channel capacity and increased flood hazard. Previous to channel squeezing and pre-vegetation encroachment, river discharges as high as 1450 m3·s−1 (the year 1924) were required to inundate the same areas as the 790 m3·s−1 streamflow for recent floods (the year 2010). We conclude that future projections of one-in-a-century river floods need to include geomorphic drivers as they compete with the reduction of peak discharges under the current climate change scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9070727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9070727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/rs14030705
Vegetation phenology does not only serve as a key index of terrestrial ecosystem response to worldwide climate change but also has a major influence on plant productivity and the carbon cycle. In the current research, the change of vegetation phenological parameters was studied and the impact exerted by climate change on phenological phases in northeast China for 1982–2014 was explored using the latest edition of the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS NDVI3g) dataset. The results showed that the start of the growing season (SOS) slightly advanced, the end of the growing season (EOS) showed a significant delay, and the length of the growing season (LOS) exhibited a significant prolonging at the regional scale. At the different vegetation types scale, there existed diverse responses of vegetation phenological phases to climate change for forest, grassland, and cultivated land. Significant decreasing trends in the SOS occupied 19.1% of the entire research area, whereas pixels with significantly increasing trends in the SOS accounted for 13.1%. The EOS was delayed in most of the study region (approximately 72.1%). As the result of the variations of SOS and EOS, the LOS was obviously enhanced (p < 0.05) in 29.7% of the research area. According to the correlation of vegetation phenology with climate factors, the SOS had a significant negative relationship with the average temperature in springtime, while the EOS was notably negatively connected to summer total precipitation at the regional scale. At the pixel scale, the correlation of phenological parameters with climate variables showed strong spatial heterogeneities. This study contributes to the comprehension of the responses of vegetation phenology to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14030705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs14030705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 TaiwanPublisher:MDPI AG Authors:Hui Tsai;
Hui Tsai
Hui Tsai in OpenAIREYu-Hao Lin;
Yu-Hao Lin
Yu-Hao Lin in OpenAIREMing-Der Yang;
Ming-Der Yang
Ming-Der Yang in OpenAIREdoi: 10.3390/rs8040290
handle: 11455/94568
Due to 4000 m elevation variation with temperature differences equivalent to 50 degrees of latitudinal gradient, exploring Taiwan’s spatial vegetation trends is valuable in terms of diverse ecosystems and climatic types covering a relatively small island with an area of 36,000 km2. This study analyzed Taiwan’s spatial vegetation trends with controlling environmental variables through redundancy (RDA) and hierarchical cluster (HCA) analyses over three decades (1982–2012) of monthly normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) NDVI3g data for 19 selected weather stations over the island. Results showed two spatially distinct vegetation response groups. Group 1 comprises weather stations which remained relatively natural showing a slight increasing NDVI tendency accompanied with rising temperature, whereas Group 2 comprises stations with high level of human development showing a slight decreasing NDVI tendency associated with increasing temperature-induced moisture stress. Statistically significant controlling variables include climatic factors (temperature and precipitation), orographic factors (mean slope and aspects), and anthropogenic factor (population density). Given the potential trajectories for future warming, variable precipitation, and population pressure, challenges, such as land-cover and water-induced vegetation stress, need to be considered simultaneously for establishing adequate adaptation strategies to combat climate change challenges in Taiwan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8040290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8040290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:José Antonio Sobrino;
José Antonio Sobrino
José Antonio Sobrino in OpenAIRENájila Souza da Rocha;
Drazen Skoković; Pâmela Suélen Käfer; +3 AuthorsNájila Souza da Rocha
Nájila Souza da Rocha in OpenAIREJosé Antonio Sobrino;
José Antonio Sobrino
José Antonio Sobrino in OpenAIRENájila Souza da Rocha;
Drazen Skoković; Pâmela Suélen Käfer;Nájila Souza da Rocha
Nájila Souza da Rocha in OpenAIRERamón López-Urrea;
Ramón López-Urrea
Ramón López-Urrea in OpenAIREJuan Carlos Jiménez-Muñoz;
Silvia Beatriz Alves Rolim;Juan Carlos Jiménez-Muñoz
Juan Carlos Jiménez-Muñoz in OpenAIREdoi: 10.3390/rs13183686
Evapotranspiration (ET) is a variable of the climatic system and hydrological cycle that plays an important role in biosphere–atmosphere–hydrosphere interactions. In this paper, remote sensing-based ET estimates with the simplified surface energy balance index (S-SEBI) model using Landsat 8 data were compared with in situ lysimeter measurements for different land covers (Grass, Wheat, Barley, and Vineyard) at the Barrax site, Spain, for the period 2014–2018. Daily estimates produced superior performance than hourly estimates in all the land covers, with an average difference of 12% and 15% for daily and hourly ET estimates, respectively. Grass and Vineyard showed the best performance, with an RMSE of 0.10 mm/h and 0.09 mm/h and 1.11 mm/day and 0.63 mm/day, respectively. Thus, the S-SEBI model is able to retrieve ET from Landsat 8 data with an average RMSE for daily ET of 0.86 mm/day. Some model uncertainties were also analyzed, and we concluded that the overpass of the Landsat missions represents neither the maximum daily ET nor the average daily ET, which contributes to an increase in errors in the estimated ET. However, the S-SEBI model can be used to operationally retrieve ET from agriculture sites with good accuracy and sufficient variation between pixels, thus being a suitable option to be adopted into operational ET remote sensing programs for irrigation scheduling or other purposes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13183686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs13183686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu