- home
- Advanced Search
- Energy Research
- 14. Life underwater
- OceanRep
- Energy Research
- 14. Life underwater
- OceanRep
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, France, Belgium, Germany, FrancePublisher:Elsevier BV Margot Arnould-Pétré; Bruno Danis; Jean-Pierre Féral; Thomas Saucède; Charlène Guillaumot; Charlène Guillaumot;Abstract The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to an individual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions where access and bio-monitoring represent challenging issues.
Ecological Modelling arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2020.109352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Modelling arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2020.109352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, Germany, FrancePublisher:Elsevier BV Gualtiero Spiro Jaeger; Chang Jae Choi; Lisa Sudek; Charles Bachy; V.V.S.S. Sarma; Alexandra Z. Worden; Alexandra Z. Worden; Camille Poirier; Stephen J. Giovannoni; Amala Mahadevan;Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1-3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.
OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2017License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.cub.2016.11.032Data sources: Bielefeld Academic Search Engine (BASE)Université de Lille 3 - Sciences Humaines et Sociales: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2017License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.cub.2016.11.032Data sources: Bielefeld Academic Search Engine (BASE)Université de Lille 3 - Sciences Humaines et Sociales: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, United KingdomPublisher:Portland Press Ltd. Authors: Jake Bowley; Craig Baker-Austin; Steve Michell; Ceri Lewis;Microplastics are small (<5 mm) plastic particles of varying shapes and polymer types that are now widespread global contaminants of marine and freshwater ecosystems. Various estimates suggest that several trillions of microplastic particles are present in our global oceanic system, and that these are readily ingested by a wide range of marine and freshwater species across feeding modes and ecological niches. Here, we present some of the key and pressing issues associated with these globally important contaminants from a microbiological perspective. We discuss the potential mechanisms of pathogen attachment to plastic surfaces. We then describe the ability of pathogens (both human and animal) to form biofilms on microplastics, as well as dispersal of these bacteria, which might lead to their uptake into aquatic species ingesting microplastic particles. Finally, we discuss the role of a changing oceanic system on the potential of microplastic-associated pathogens to cause various disease outcomes using numerous case studies. We set out some key and imperative research questions regarding this globally important issue and present a methodological framework to study how and why plastic-associated pathogens should be addressed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Authors: Stevenson, Angela; O Corcora, Tadhg C.; Hukriede, Wolfgang; Schubert, Philipp R.; +1 AuthorsStevenson, Angela; O Corcora, Tadhg C.; Hukriede, Wolfgang; Schubert, Philipp R.; Reusch, Thorsten B. H.;Seagrass meadows have a disproportionally high organic carbon (Corg) storage potential within their sediments and thus can play a role in climate change mitigation via their conservation and restoration. However, high spatial heterogeneity is observed in Corg, with wide differences seen globally, regionally, and even locally (within a seagrass meadow). Consequently, it is difficult to determine their contributions to the national remaining carbon dioxide (CO2) budget without introducing a large degree of uncertainty. To address this spatial heterogeneity, we sampled 20 locations across the German Baltic Sea to quantify Corgstocks and sources inZostera marinaseagrass-vegetated and adjacent unvegetated sediments. To predict and integrate the Corginventory in space, we measured the physical (seawater depth, sediment grain size, current velocity at the seafloor, anthropogenic inputs) and biological (seagrass complexity) environment to determine regional and local drivers of Corgvariation. Here we show that seagrass meadows in Germany constitute a significant Corgstock, storing on average 1,920 g C/m2, three times greater than meadows from other parts of the Baltic Sea, and three-fold richer than adjacent unvegetated sediments. Stocks were highly heterogenous; they differed widely between (by 22-fold) and even within (by 1.5 to 31-fold) sites. Regionally, Corgwas controlled by seagrass complexity, fine sediment fraction, and seawater depth. Autochthonous material contributed to 12% of the total Corgin seagrass-vegetated sediments and the remaining 88% originated from allochthonous sources (phytoplankton and macroalgae). However, relics of terrestrial peatland material, deposited approximately 6,000 years BP during the last deglaciation, was an unexpected and significant source of Corg. Collectively, German seagrasses in the Baltic Sea are preventing 2.01 Mt of future CO2emissions. Because Corgis dependent on high seagrass complexity, the richness of this pool may be contingent on seagrass habitat health. Disturbance of this Corgstock could act as a source of CO2emissions. However, the high spatial heterogeneity warrant site-specific investigations to obtain accurate estimates of blue carbon, and a need to consider millennial timescale deposits of Corgbeneath seagrass meadows in Germany and potentially other parts of the southwestern Baltic Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1266663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1266663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:IOP Publishing Funded by:ARC | What caused abrupt climat...ARC| What caused abrupt climate change events in the past and what can they tell us about the future?Authors: Kvale, Karin Frances; Meissner, K. J.; Keller, David P.;Autotrophy is largely resource-limited in the modern ocean. Paleo evidence indicates this was not necessarily the case in warmer climates, and modern observations as well as standard metabolic theory suggest continued ocean warming could shift global ecology towards heterotrophy, thereby reducing autotrophic nutrient limitation. Such a shift would entail strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We demonstrate transition towards such a state in the early 22nd century as a response to business-as-usual representative concentration pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations; with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near-surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2–4 ${\;}^{\circ }{\rm{C}}$ global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/074009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/074009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Research , Preprint 2010 GermanyPublisher:Elsevier BV Andreas Oschlies; Kerstin Güssow; Alexander Proelss; Katrin Rehdanz; Katrin Rehdanz; Wilfried Rickels;Despite large uncertainties in the fertilization efficiency, natural iron fertilization studies and some of the purposeful iron enrichment studies have demonstrated that Southern Ocean iron fertilization can lead to a significant export of carbon from the sea surface to the ocean interior. From an economic perspective the potential of ocean iron fertilization (OIF) is far from negligible in relation to other abatement options. Comparing the range of cost estimates to the range of estimates for forestation projects they are in the same order of magnitude, but OIF could provide more carbon credits even if high discount rates are used to account for potential leakage and non-permanence. However, the uncertainty about undesired adverse effects of purposeful iron fertilization on marine ecosystems and biogeochemistry has led to attempts to ban commercial and, to some extent, scientific experiments aimed at a better understanding of the processes involved, effectively precluding further consideration of this mitigation option. As regards the perspective of public international law, the pertinent agreements dealing with the protection of the marine environment indicate that OIF is to be considered as lawful if and to the extent to which it represents legitimate scientific research. In this respect, the precautionary principle can be used to balance the risks arising out of scientific OIF activities for the marine environment with the potential advantages relevant to the objectives of the climate change regime. As scientific OIF experiments involve only comparatively small negative impacts within a limited marine area, further scientific research must be permitted to explore the carbon sequestration potential of OIF in order to either reject this concept or integrate it into the flexible mechanisms contained in the Kyoto Protocol.
OceanRep arrow_drop_down OceanRepArticle . 2010 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/8481/2/marpol.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2010.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2010 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/8481/2/marpol.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2010.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Denmark, GermanyPublisher:Public Library of Science (PLoS) Funded by:EC | ABYSS, EC | OXYGENEC| ABYSS ,EC| OXYGENMar Fernández-Méndez; Frank Wenzhöfer; Ilka Peeken; Heidi L. Sørensen; Ronnie N. Glud; Antje Boetius;Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.
OceanRep arrow_drop_down OceanRepArticle . 2014 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/28009/1/2014_Fernandez-Mendez-etal-Composition_journal.pone.0107452.pdfData sources: OceanRepElectronic Publication Information CenterArticle . 2014Data sources: Electronic Publication Information CenterUniversity of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research Outputhttp://dx.doi.org/10.1371/Jour...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0107452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2014 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/28009/1/2014_Fernandez-Mendez-etal-Composition_journal.pone.0107452.pdfData sources: OceanRepElectronic Publication Information CenterArticle . 2014Data sources: Electronic Publication Information CenterUniversity of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research Outputhttp://dx.doi.org/10.1371/Jour...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0107452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Elsevier BV Authors: Caramanna, Giorgio; Fietzek, Peer; Maroto-Valer, Mercedes;AbstractCarbon dioxide sequestration in sub-seafloor aims to store CO2 inside geological trapping structures below the seafloor. However there are concerns related to the possibility of leakage from the storage sites and potential consequences on the marine environment.In order to develop safe and reliable methods for CO2 monitoring, field studies were conducted in a natural analogue–an area where there is a natural release of CO2 from the seafloor.Due to the very high volume of gas emitted, this natural analogue could be considered as the worst-case scenario for a possible leakage from a sub-seabed storage site.Sampling procedures for free and dissolved gas and measuring techniques of the main physical and chemical parameters were developed for use both from the surface and directly underwater by scientific scuba divers. The first results of the research indicate that high levels of CO2 released in the marine realm strongly affect the local environmental conditions with a generalized acidification of the seawater.The experience gained in this study allows further development of a more accurate and suitable monitoring suite that will integrate sensors for measuring pH, dissolved CO2, and eventually, acoustic systems for the detection, monitoring and quantification of gas bubbles. The monitoring system could be deployed on the seafloor for long-term monitoring or could be carried onboard movable platforms such as ROV’s (Remote Operated Vehicles) or AUV’s (Autonomous Underwater Vehicles) for systematic surveys of the sub-seabed storage areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Copernicus GmbH Funded by:UKRI | Characterisation of elect..., UKRI | Structural Dynamics in LO..., UKRI | Advancing Biotechnologies...UKRI| Characterisation of electron transport in bacterial nano-wire proteins through high performance computing and experimentation ,UKRI| Structural Dynamics in LOV Domain Photosensor Proteins ,UKRI| Advancing Biotechnologies for Fuel Generation: Exploiting Transmembrane Cytochromes for Solar Energy ConversionThomas J. Browning; Thomas J. Browning; Heather A. Bouman; Robyn E. Tuerena; Raja S. Ganeshram; Matthew P. Humphreys; Matthew P. Humphreys; Alexander P. Piotrowski;Abstract. The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (εp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate εp within the varying surface water masses in this region. We further utilize these results to investigate future changes in εp with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment.
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-16-3621-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-16-3621-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Authors: Theurich, Nora; Briski, Elizabeta; Cuthbert, Ross N.;AbstractGlobally, the number of invasive non-indigenous species is continually rising, representing a major driver of biodiversity declines and a growing socio-economic burden.Hemigrapsus takanoi, the Japanese brush-clawed shore crab, is a highly successful invader in European seas. However, the ecological consequences of this invasion have remained unexamined under environmental changes—such as climatic warming and desalination, which are projected in the Baltic Sea—impeding impact prediction and management. Recently, the comparative functional response (resource use across resource densities) has been pioneered as a reliable approach to quantify and predict the ecological impacts of invasive non-indigenous species under environmental contexts. This study investigated the functional response ofH. takanoifactorially between different crab sexes and under environmental conditions predicted for the Baltic Sea in the contexts of climate warming (16 and 22 °C) and desalination (15 and 10), towards blue musselMytilus edulisprey provided at different densities.Hemigrapsus takanoidisplayed a potentially population-destabilising Type II functional response (i.e. inversely-density dependent) towards mussel prey under all environmental conditions, characterised by high feeding rates at low prey densities that could extirpate prey populations—notwithstanding high in-field abundances ofM. edulis. Males exhibited higher feeding rates than females under all environmental conditions. Higher temperatures reduced the feeding rate of maleH. takanoi, but did not affect the feeding rate of females. Salinity did not have a clear effect on feeding rates for either sex. These results provide insights into interactions between biological invasions and climate change, with future warming potentially lessening the impacts of this rapidly spreading marine invader, depending on the underlying population demographics and abundances.
OceanRep arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-14008-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-14008-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, France, Belgium, Germany, FrancePublisher:Elsevier BV Margot Arnould-Pétré; Bruno Danis; Jean-Pierre Féral; Thomas Saucède; Charlène Guillaumot; Charlène Guillaumot;Abstract The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to an individual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions where access and bio-monitoring represent challenging issues.
Ecological Modelling arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2020.109352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Modelling arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of IfremerHAL - Université de Bourgogne (HAL-uB)Other literature type . 2021Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2020.109352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, Germany, FrancePublisher:Elsevier BV Gualtiero Spiro Jaeger; Chang Jae Choi; Lisa Sudek; Charles Bachy; V.V.S.S. Sarma; Alexandra Z. Worden; Alexandra Z. Worden; Camille Poirier; Stephen J. Giovannoni; Amala Mahadevan;Ocean surface warming is resulting in an expansion of stratified, low-nutrient environments, a process referred to as ocean desertification [1]. A challenge for assessing the impact of these changes is the lack of robust baseline information on the biological communities that carry out marine photosynthesis. Phytoplankton perform half of global biological CO2 uptake, fuel marine food chains, and include diverse eukaryotic algae that have photosynthetic organelles (plastids) acquired through multiple evolutionary events [1-3]. While amassing data from ocean ecosystems for the Baselines Initiative (6,177 near full-length 16S rRNA gene sequences and 9.4 million high-quality 16S V1-V2 amplicons) we identified two deep-branching plastid lineages based on 16S rRNA gene data. The two lineages have global distributions, but do not correspond to known phytoplankton. How the newly discovered phytoplankton lineages contribute to food chains and vertical carbon export to the deep sea remains unknown, but their prevalence in expanding, low nutrient surface waters suggests they will have a role in future oceans.
OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2017License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.cub.2016.11.032Data sources: Bielefeld Academic Search Engine (BASE)Université de Lille 3 - Sciences Humaines et Sociales: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Woods Hole Open Access ServerArticle . 2017License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.cub.2016.11.032Data sources: Bielefeld Academic Search Engine (BASE)Université de Lille 3 - Sciences Humaines et Sociales: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2016.11.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, United KingdomPublisher:Portland Press Ltd. Authors: Jake Bowley; Craig Baker-Austin; Steve Michell; Ceri Lewis;Microplastics are small (<5 mm) plastic particles of varying shapes and polymer types that are now widespread global contaminants of marine and freshwater ecosystems. Various estimates suggest that several trillions of microplastic particles are present in our global oceanic system, and that these are readily ingested by a wide range of marine and freshwater species across feeding modes and ecological niches. Here, we present some of the key and pressing issues associated with these globally important contaminants from a microbiological perspective. We discuss the potential mechanisms of pathogen attachment to plastic surfaces. We then describe the ability of pathogens (both human and animal) to form biofilms on microplastics, as well as dispersal of these bacteria, which might lead to their uptake into aquatic species ingesting microplastic particles. Finally, we discuss the role of a changing oceanic system on the potential of microplastic-associated pathogens to cause various disease outcomes using numerous case studies. We set out some key and imperative research questions regarding this globally important issue and present a methodological framework to study how and why plastic-associated pathogens should be addressed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1042/etls20220022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Authors: Stevenson, Angela; O Corcora, Tadhg C.; Hukriede, Wolfgang; Schubert, Philipp R.; +1 AuthorsStevenson, Angela; O Corcora, Tadhg C.; Hukriede, Wolfgang; Schubert, Philipp R.; Reusch, Thorsten B. H.;Seagrass meadows have a disproportionally high organic carbon (Corg) storage potential within their sediments and thus can play a role in climate change mitigation via their conservation and restoration. However, high spatial heterogeneity is observed in Corg, with wide differences seen globally, regionally, and even locally (within a seagrass meadow). Consequently, it is difficult to determine their contributions to the national remaining carbon dioxide (CO2) budget without introducing a large degree of uncertainty. To address this spatial heterogeneity, we sampled 20 locations across the German Baltic Sea to quantify Corgstocks and sources inZostera marinaseagrass-vegetated and adjacent unvegetated sediments. To predict and integrate the Corginventory in space, we measured the physical (seawater depth, sediment grain size, current velocity at the seafloor, anthropogenic inputs) and biological (seagrass complexity) environment to determine regional and local drivers of Corgvariation. Here we show that seagrass meadows in Germany constitute a significant Corgstock, storing on average 1,920 g C/m2, three times greater than meadows from other parts of the Baltic Sea, and three-fold richer than adjacent unvegetated sediments. Stocks were highly heterogenous; they differed widely between (by 22-fold) and even within (by 1.5 to 31-fold) sites. Regionally, Corgwas controlled by seagrass complexity, fine sediment fraction, and seawater depth. Autochthonous material contributed to 12% of the total Corgin seagrass-vegetated sediments and the remaining 88% originated from allochthonous sources (phytoplankton and macroalgae). However, relics of terrestrial peatland material, deposited approximately 6,000 years BP during the last deglaciation, was an unexpected and significant source of Corg. Collectively, German seagrasses in the Baltic Sea are preventing 2.01 Mt of future CO2emissions. Because Corgis dependent on high seagrass complexity, the richness of this pool may be contingent on seagrass habitat health. Disturbance of this Corgstock could act as a source of CO2emissions. However, the high spatial heterogeneity warrant site-specific investigations to obtain accurate estimates of blue carbon, and a need to consider millennial timescale deposits of Corgbeneath seagrass meadows in Germany and potentially other parts of the southwestern Baltic Sea.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1266663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1266663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:IOP Publishing Funded by:ARC | What caused abrupt climat...ARC| What caused abrupt climate change events in the past and what can they tell us about the future?Authors: Kvale, Karin Frances; Meissner, K. J.; Keller, David P.;Autotrophy is largely resource-limited in the modern ocean. Paleo evidence indicates this was not necessarily the case in warmer climates, and modern observations as well as standard metabolic theory suggest continued ocean warming could shift global ecology towards heterotrophy, thereby reducing autotrophic nutrient limitation. Such a shift would entail strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We demonstrate transition towards such a state in the early 22nd century as a response to business-as-usual representative concentration pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations; with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near-surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2–4 ${\;}^{\circ }{\rm{C}}$ global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/074009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/074009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Research , Preprint 2010 GermanyPublisher:Elsevier BV Andreas Oschlies; Kerstin Güssow; Alexander Proelss; Katrin Rehdanz; Katrin Rehdanz; Wilfried Rickels;Despite large uncertainties in the fertilization efficiency, natural iron fertilization studies and some of the purposeful iron enrichment studies have demonstrated that Southern Ocean iron fertilization can lead to a significant export of carbon from the sea surface to the ocean interior. From an economic perspective the potential of ocean iron fertilization (OIF) is far from negligible in relation to other abatement options. Comparing the range of cost estimates to the range of estimates for forestation projects they are in the same order of magnitude, but OIF could provide more carbon credits even if high discount rates are used to account for potential leakage and non-permanence. However, the uncertainty about undesired adverse effects of purposeful iron fertilization on marine ecosystems and biogeochemistry has led to attempts to ban commercial and, to some extent, scientific experiments aimed at a better understanding of the processes involved, effectively precluding further consideration of this mitigation option. As regards the perspective of public international law, the pertinent agreements dealing with the protection of the marine environment indicate that OIF is to be considered as lawful if and to the extent to which it represents legitimate scientific research. In this respect, the precautionary principle can be used to balance the risks arising out of scientific OIF activities for the marine environment with the potential advantages relevant to the objectives of the climate change regime. As scientific OIF experiments involve only comparatively small negative impacts within a limited marine area, further scientific research must be permitted to explore the carbon sequestration potential of OIF in order to either reject this concept or integrate it into the flexible mechanisms contained in the Kyoto Protocol.
OceanRep arrow_drop_down OceanRepArticle . 2010 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/8481/2/marpol.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2010.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2010 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/8481/2/marpol.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2010.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Denmark, GermanyPublisher:Public Library of Science (PLoS) Funded by:EC | ABYSS, EC | OXYGENEC| ABYSS ,EC| OXYGENMar Fernández-Méndez; Frank Wenzhöfer; Ilka Peeken; Heidi L. Sørensen; Ronnie N. Glud; Antje Boetius;Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.
OceanRep arrow_drop_down OceanRepArticle . 2014 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/28009/1/2014_Fernandez-Mendez-etal-Composition_journal.pone.0107452.pdfData sources: OceanRepElectronic Publication Information CenterArticle . 2014Data sources: Electronic Publication Information CenterUniversity of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research Outputhttp://dx.doi.org/10.1371/Jour...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0107452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2014 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/28009/1/2014_Fernandez-Mendez-etal-Composition_journal.pone.0107452.pdfData sources: OceanRepElectronic Publication Information CenterArticle . 2014Data sources: Electronic Publication Information CenterUniversity of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research Outputhttp://dx.doi.org/10.1371/Jour...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1371/jour...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0107452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 GermanyPublisher:Elsevier BV Authors: Caramanna, Giorgio; Fietzek, Peer; Maroto-Valer, Mercedes;AbstractCarbon dioxide sequestration in sub-seafloor aims to store CO2 inside geological trapping structures below the seafloor. However there are concerns related to the possibility of leakage from the storage sites and potential consequences on the marine environment.In order to develop safe and reliable methods for CO2 monitoring, field studies were conducted in a natural analogue–an area where there is a natural release of CO2 from the seafloor.Due to the very high volume of gas emitted, this natural analogue could be considered as the worst-case scenario for a possible leakage from a sub-seabed storage site.Sampling procedures for free and dissolved gas and measuring techniques of the main physical and chemical parameters were developed for use both from the surface and directly underwater by scientific scuba divers. The first results of the research indicate that high levels of CO2 released in the marine realm strongly affect the local environmental conditions with a generalized acidification of the seawater.The experience gained in this study allows further development of a more accurate and suitable monitoring suite that will integrate sensors for measuring pH, dissolved CO2, and eventually, acoustic systems for the detection, monitoring and quantification of gas bubbles. The monitoring system could be deployed on the seafloor for long-term monitoring or could be carried onboard movable platforms such as ROV’s (Remote Operated Vehicles) or AUV’s (Autonomous Underwater Vehicles) for systematic surveys of the sub-seabed storage areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Copernicus GmbH Funded by:UKRI | Characterisation of elect..., UKRI | Structural Dynamics in LO..., UKRI | Advancing Biotechnologies...UKRI| Characterisation of electron transport in bacterial nano-wire proteins through high performance computing and experimentation ,UKRI| Structural Dynamics in LOV Domain Photosensor Proteins ,UKRI| Advancing Biotechnologies for Fuel Generation: Exploiting Transmembrane Cytochromes for Solar Energy ConversionThomas J. Browning; Thomas J. Browning; Heather A. Bouman; Robyn E. Tuerena; Raja S. Ganeshram; Matthew P. Humphreys; Matthew P. Humphreys; Alexander P. Piotrowski;Abstract. The stable isotopic composition of particulate organic carbon (δ13CPOC) in the surface waters of the global ocean can vary with the aqueous CO2 concentration ([CO2(aq)]) and affects the trophic transfer of carbon isotopes in the marine food web. Other factors such as cell size, growth rate and carbon concentrating mechanisms decouple this observed correlation. Here, the variability in δ13CPOC is investigated in surface waters across the south subtropical convergence (SSTC) in the Atlantic Ocean, to determine carbon isotope fractionation (εp) by phytoplankton and the contrasting mechanisms of carbon uptake in the subantarctic and subtropical water masses. Our results indicate that cell size is the primary determinant of δ13CPOC across the Atlantic SSTC in summer. Combining cell size estimates with CO2 concentrations, we can accurately estimate εp within the varying surface water masses in this region. We further utilize these results to investigate future changes in εp with increased anthropogenic carbon availability. Our results suggest that smaller cells, which are prevalent in the subtropical ocean, will respond less to increased [CO2(aq)] than the larger cells found south of the SSTC and in the wider Southern Ocean. In the subantarctic water masses, isotopic fractionation during carbon uptake will likely increase, both with increasing CO2 availability to the cell, but also if increased stratification leads to decreases in average community cell size. Coupled with decreasing δ13C of [CO2(aq)] due to anthropogenic CO2 emissions, this change in isotopic fractionation and lowering of δ13CPOC may propagate through the marine food web, with implications for the use of δ13CPOC as a tracer of dietary sources in the marine environment.
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-16-3621-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2019License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-16-3621-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Authors: Theurich, Nora; Briski, Elizabeta; Cuthbert, Ross N.;AbstractGlobally, the number of invasive non-indigenous species is continually rising, representing a major driver of biodiversity declines and a growing socio-economic burden.Hemigrapsus takanoi, the Japanese brush-clawed shore crab, is a highly successful invader in European seas. However, the ecological consequences of this invasion have remained unexamined under environmental changes—such as climatic warming and desalination, which are projected in the Baltic Sea—impeding impact prediction and management. Recently, the comparative functional response (resource use across resource densities) has been pioneered as a reliable approach to quantify and predict the ecological impacts of invasive non-indigenous species under environmental contexts. This study investigated the functional response ofH. takanoifactorially between different crab sexes and under environmental conditions predicted for the Baltic Sea in the contexts of climate warming (16 and 22 °C) and desalination (15 and 10), towards blue musselMytilus edulisprey provided at different densities.Hemigrapsus takanoidisplayed a potentially population-destabilising Type II functional response (i.e. inversely-density dependent) towards mussel prey under all environmental conditions, characterised by high feeding rates at low prey densities that could extirpate prey populations—notwithstanding high in-field abundances ofM. edulis. Males exhibited higher feeding rates than females under all environmental conditions. Higher temperatures reduced the feeding rate of maleH. takanoi, but did not affect the feeding rate of females. Salinity did not have a clear effect on feeding rates for either sex. These results provide insights into interactions between biological invasions and climate change, with future warming potentially lessening the impacts of this rapidly spreading marine invader, depending on the underlying population demographics and abundances.
OceanRep arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-14008-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-022-14008-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu