- home
- Advanced Search
- Energy Research
- 13. Climate action
- 6. Clean water
- University of California System
- Energy Research
- 13. Climate action
- 6. Clean water
- University of California System
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Roman Isaenkov; Roman Pevzner; Stanislav Glubokovskikh; Sinem Yavuz; Alexey Yurikov; Konstantin Tertyshnikov; Boris Gurevich; Julia Correa; Todd Wood; Barry Freifeld; Michael Mondanos; Stoyan Nikolov; Paul Barraclough;Abstract A permanent automated continuous seismic CO2 geosequestration monitoring system for was installed at CO2CRC Otway Project site (Victoria, Australia) in early 2020. The system is composed of five deviated ∼1600 m deep wells equipped with distributed acoustic sensing (DAS) acting as seismic receivers and nine seismic orbital vibrators (SOV) as seismic sources. DAS recording is performed continuously by three iDASv3 units. Each SOV operates for 2.5 h at a time, and hence all SOVs operating sequentially (during daytime only) produce in a single vintage every two days. Each vintage consists of 45 offset VSP transects covering predicted CO2 plume migration paths over ∼0.7 km2 area. An automated data processing implemented on-site reduces data size from ∼1.3 TB/day to ∼500 MB/day with the results transmitted to the office daily. The repeatability analysis based on pre-injection data (acquired from May to October 2020 before the injection start in December 2020) shows that variability of SOV performance is the main source of non-repeatability while borehole measurements are stable. An SOV waveform could reach NRMS value from 20 to 100 % within a few days. However, deconvolution of the seismograms with the waveform of the direct wave reduces the repeatability to within 10–15 % NRMS.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/52x710rtData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/52x710rtData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2007 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Xu, Tengfang; Greenberg, Steve;doi: 10.2172/926604
Data Center Energy Benchmarking: Part 5 - Case Studies on a Corporate Data Center (No. 22) Final Report August 2007 Final Report Prepared by Tengfang Xu and Steve Greenberg Lawrence Berkeley National Laboratory (LBNL) Berkeley CA 94720 Draft provided by EYP Mission Critical Facilities Los Angeles, CA 90064 and Landsberg Engineering, P.C. Clifton Park, NY 12065
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/926604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/926604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Authors: Chris Funk; Will Turner; Juliet Way-Henthorne;The overarching goal of this work is to develop and demonstrate methods that support effective agro-pastoral risk management in a changing climate. Disaster mitigation strategies, such as the Sendai Framework for Disaster Risk Reduction (SFDRR), emphasize the need to address underlying causes of disaster risk and to prevent the emergence of new risks. Such assessments can be difficult, because they require transforming changes in meteorological outcomes into sector-specific impact. While it is common to examine trends in seasonal precipitation and precipitation extremes, it is much less common to study how these trends interact with crop and pasture water needs. Here, we show that the Water Requirement (WR) component of the widely used Water Requirement Satisfaction Index (WRSI) can be used to enhance the interpretation of precipitation changes. The WR helps answer a key question: was the amount of rainfall received in a given season enough to satisfy a crop or pasture's water needs? Our first results section focuses on analyzing spatial patterns of climate change. We show how WR values can be used to translate east African rainfall declines into estimates of crop and rangeland water deficits. We also show that increases in WR, during recent droughts, has intensified aridity in arid regions. In addition, using the PWB, we also show that precipitation increases in humid areas of western east Africa have been producing increasingly frequent excessive rainfall seasons. The second portion of our paper focuses on assessing temporal outcomes for a fixed location (Kenya) to support drought-management scenario development. Kenyan rainfall is decreasing and population is increasing. How can we translate this data into actionable information? The United Nations and World Meteorological Organization advise nations to proactively plan for agro-hydrologic shocks by setting aside sufficient grain and financial resources to help buffer inevitable low-crop production years. We show how precipitation, WR, crop statistics, and population data can be used to help guide 1-in-10 and 1-in-25-year low crop yield scenarios, which could be used to guide Kenya's drought management planning and development. The first and second research components share a common objective: using the PWB to translate rainfall data into more actionable information that can inform disaster risk management and development planning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.716588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.716588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Lara P. Brodie; Jacqueline M. Bishop; Guy F. Midgley; Kerry-Anne Grey;Concerns have been raised about attribution of species range shifts to anthropogenic climate change. Species paleo-range projections are emerging as a means to broaden understanding of range shifts and could be applied to assist in attribution. Apparent recent range contraction in the Quiver Tree (Aloidendron dichotomum (Masson) Klopper and Gideon F.Sm) has been attributed to anthropogenic climate change, but this has been challenged. We simulated the paleo- and future geographic range of A. dichotomum under changing climate using species distribution models (SDMs) to provide a broader perspective on its range dynamics. Ensemble modelling of the Last Glacial Maximum (LGM), mid-Holocene, current, and projected 2070 time periods simulates a paleo-historical poleward expansion of suitable bioclimatic space for this species under natural climate change post-LGM, and projects an eastward shift towards 2070. During the LGM, suitable bioclimatic space for A. dichotomum was simulated to be restricted to the equatorward part of its current range. During the Pleistocene/mid-Holocene climate transition period, the species’ range is predicted to have expanded significantly polewards at an average rate of 0.4 km per decade, assuming constant tracking of its optimal climatic niche. By 2070, suitable bioclimatic space is projected to expand further eastward into the summer rainfall region of South Africa, and contract in its equatorward reaches. Simulated post-LGM shifts roughly match expectations based on preliminary phylogenetic information, further supporting the attribution of current population declines to anthropogenic climate change drivers. Equatorward populations are required to migrate south-eastwards at a rate roughly 15 times faster than that calculated for the LGM/mid-Holocene climate transition period to avoid local extirpation. A preliminary analysis of range-wide genetic variation reveals a cline of variation, with generally higher levels in the central and more northerly part of the species distribution, as expected from the proposed paleo-range of the species. A more detailed analysis of the species’ phylogeographic history could be used to test the proposed paleo-range dynamics presented here, and if confirmed, would provide strong support for the use of this species as an indicator of anthropogenic climate change and a powerful case study for testing the implementation of conservation actions.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.715702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.715702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:SAGE Publications Authors: Adam Rose; Noah Dormady;This paper provides a meta-analysis of a broad set of recent studies of the economic impacts of climate change mitigation policies. It evaluates the influences of the impacts of causal factors, key economic assumptions and macroeconomic linkages on the outcome of these studies. A quantile regression analysis is also performed on the meta sample, to evaluate the robustness of those key factors throughout the full range of macro findings. Results of these analyses suggest that study results are strongly driven by data inputs, economic assumptions and modeling approaches. However, they are sometimes affected in counterintuitive ways.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/issn0195-6574-ej-vol32-no2-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/issn0195-6574-ej-vol32-no2-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors: Suárez Poch, Francisco Ignacio; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;handle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Cold Spring Harbor Laboratory Funded by:NSF | RESEARCH-PGR: Phenotypic...NSF| RESEARCH-PGR: Phenotypic and Genomic Diversity of North American VitisAbraham Morales-Cruz; Jonas Aguirre-Liguori; Mélanie Massonnet; Andrea Minio; Mirella Zaccheo; Noe Cochetel; Andrew Walker; Summaira Riaz; Yongfeng Zhou; Dario Cantu; Brandon S. Gaut;AbstractXylella fastidiosais a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives, causing economically devastating damage. There is, however, little understanding of the genes that contribute to resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine species,Vitis arizonica, that segregates for resistance toX. fastidiosa. Using genome-wide association, we identified candidate genes that mediate the host response toX. fastidiosainfection. We uncovered evidence that resistance requires genes from multiple genomic regions, based on data from breeding populations and from additionalVitisspecies. We also inferred that resistance evolved more than once in the wild, suggesting that wildVitisspecies may be a rich source for resistance alleles and mechanisms. Finally, resistance inV. arizonicawas climate dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as some genetic markers. This work underscores that pathogen pressure is likely to increase with climate, but it also provides genetic insight and tools for breeding and transforming resistant crops.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:American Geophysical Union (AGU) Authors: Smith-Downey, Nicole V.; Randerson, James T.; Eiler, John M.;doi: 10.1029/2006gl026749
The soil sink of molecular hydrogen is the largest and most uncertain term in the global atmospheric H2 budget. Lack of information about the mechanisms regulating this sink limits our ability to predict how atmospheric H2 may respond to future changes in climate or anthropogenic emissions. Here we present the results from a series of laboratory experiments designed to systematically evaluate and describe the temperature and soil moisture dependence of H2 uptake by soils from boreal forest and desert ecosystems. We observed substantial H2 uptake between −4°C and 0°C, a broad temperature optimum between 20°C and 30°C, a soil moisture optimum at approximately 20% saturation, and inhibition of uptake at both low and high soil moisture. A sigmoidal function described the temperature response of H2 uptake by soils between −15°C and 40°C. Based on our results, we present a framework for a model of the soil H2 sink.
Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/4r7096qkData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2006Full-Text: https://doi.org/10.1029/2006GL026749Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006gl026749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/4r7096qkData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2006Full-Text: https://doi.org/10.1029/2006GL026749Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006gl026749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Sleeter, Benjamin M; Nelson, Erik; Plantinga, Andrew J.; Cameron, Dick; Marvin, David C;AbstractNatural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios. Forest and conservation land management strategies make up 85% of all NCS emissions reductions by 2050, with agricultural strategies accounting for the remaining 15%. The most severe climate change impacts on ecosystem carbon materialize in the latter half of the century with three scenarios resulting in California ecosystems becoming a net source of carbon emissions under a baseline trajectory. However, NCS provide a strong attenuating effect, reducing land carbon emissions 41–54% by 2100 with total costs of deployment of 752–777 million USD annually through 2050. Rapid implementation of a portfolio of NCS interventions provides long-term investment in protecting ecosystem carbon in the face of climate change driven disturbances. This open-source, spatially-explicit framework can help evaluate risks to NCS carbon storage stability, implementation costs, and overall mitigation potential for NCS at jurisdictional scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-43118-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-43118-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Elsevier BV Authors: Rand, Joseph; Hoen, Ben;Thirty years of North American research on public acceptance of wind energy has produced important insights, yet knowledge gaps remain. This review synthesizes the literature, revealing the following lessons learned. (1) North American support for wind has been consistently high. (2) The NIMBY explanation for resistance to wind development is invalid. (3) Socioeconomic impacts of wind development are strongly tied to acceptance. (4) Sound and visual impacts of wind facilities are strongly tied to annoyance and opposition, and ignoring these concerns can exacerbate conflict. (5) Environmental concerns matter, though less than other factors, and these concerns can both help and hinder wind development. (6) Issues of fairness, participation, and trust during the development process influence acceptance. (7) Distance from turbines affects other explanatory variables, but alone its influence is unclear. (8) Viewing opposition as something to be overcome prevents meaningful understandings and implementation of best practices. (9) Implementation of research findings into practice has been limited. The paper also identifies areas for future research on wind acceptance. With continued research efforts and a commitment toward implementing research findings into developer and policymaker practice, conflict and perceived injustices around proposed and existing wind energy facilities might be significantly lessened.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3747t3q4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEnergy Research & Social ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3747t3q4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEnergy Research & Social ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Roman Isaenkov; Roman Pevzner; Stanislav Glubokovskikh; Sinem Yavuz; Alexey Yurikov; Konstantin Tertyshnikov; Boris Gurevich; Julia Correa; Todd Wood; Barry Freifeld; Michael Mondanos; Stoyan Nikolov; Paul Barraclough;Abstract A permanent automated continuous seismic CO2 geosequestration monitoring system for was installed at CO2CRC Otway Project site (Victoria, Australia) in early 2020. The system is composed of five deviated ∼1600 m deep wells equipped with distributed acoustic sensing (DAS) acting as seismic receivers and nine seismic orbital vibrators (SOV) as seismic sources. DAS recording is performed continuously by three iDASv3 units. Each SOV operates for 2.5 h at a time, and hence all SOVs operating sequentially (during daytime only) produce in a single vintage every two days. Each vintage consists of 45 offset VSP transects covering predicted CO2 plume migration paths over ∼0.7 km2 area. An automated data processing implemented on-site reduces data size from ∼1.3 TB/day to ∼500 MB/day with the results transmitted to the office daily. The repeatability analysis based on pre-injection data (acquired from May to October 2020 before the injection start in December 2020) shows that variability of SOV performance is the main source of non-repeatability while borehole measurements are stable. An SOV waveform could reach NRMS value from 20 to 100 % within a few days. However, deconvolution of the seismograms with the waveform of the direct wave reduces the repeatability to within 10–15 % NRMS.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/52x710rtData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/52x710rtData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 2007 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Xu, Tengfang; Greenberg, Steve;doi: 10.2172/926604
Data Center Energy Benchmarking: Part 5 - Case Studies on a Corporate Data Center (No. 22) Final Report August 2007 Final Report Prepared by Tengfang Xu and Steve Greenberg Lawrence Berkeley National Laboratory (LBNL) Berkeley CA 94720 Draft provided by EYP Mission Critical Facilities Los Angeles, CA 90064 and Landsberg Engineering, P.C. Clifton Park, NY 12065
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/926604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/926604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Authors: Chris Funk; Will Turner; Juliet Way-Henthorne;The overarching goal of this work is to develop and demonstrate methods that support effective agro-pastoral risk management in a changing climate. Disaster mitigation strategies, such as the Sendai Framework for Disaster Risk Reduction (SFDRR), emphasize the need to address underlying causes of disaster risk and to prevent the emergence of new risks. Such assessments can be difficult, because they require transforming changes in meteorological outcomes into sector-specific impact. While it is common to examine trends in seasonal precipitation and precipitation extremes, it is much less common to study how these trends interact with crop and pasture water needs. Here, we show that the Water Requirement (WR) component of the widely used Water Requirement Satisfaction Index (WRSI) can be used to enhance the interpretation of precipitation changes. The WR helps answer a key question: was the amount of rainfall received in a given season enough to satisfy a crop or pasture's water needs? Our first results section focuses on analyzing spatial patterns of climate change. We show how WR values can be used to translate east African rainfall declines into estimates of crop and rangeland water deficits. We also show that increases in WR, during recent droughts, has intensified aridity in arid regions. In addition, using the PWB, we also show that precipitation increases in humid areas of western east Africa have been producing increasingly frequent excessive rainfall seasons. The second portion of our paper focuses on assessing temporal outcomes for a fixed location (Kenya) to support drought-management scenario development. Kenyan rainfall is decreasing and population is increasing. How can we translate this data into actionable information? The United Nations and World Meteorological Organization advise nations to proactively plan for agro-hydrologic shocks by setting aside sufficient grain and financial resources to help buffer inevitable low-crop production years. We show how precipitation, WR, crop statistics, and population data can be used to help guide 1-in-10 and 1-in-25-year low crop yield scenarios, which could be used to guide Kenya's drought management planning and development. The first and second research components share a common objective: using the PWB to translate rainfall data into more actionable information that can inform disaster risk management and development planning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.716588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2021.716588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Authors: Lara P. Brodie; Jacqueline M. Bishop; Guy F. Midgley; Kerry-Anne Grey;Concerns have been raised about attribution of species range shifts to anthropogenic climate change. Species paleo-range projections are emerging as a means to broaden understanding of range shifts and could be applied to assist in attribution. Apparent recent range contraction in the Quiver Tree (Aloidendron dichotomum (Masson) Klopper and Gideon F.Sm) has been attributed to anthropogenic climate change, but this has been challenged. We simulated the paleo- and future geographic range of A. dichotomum under changing climate using species distribution models (SDMs) to provide a broader perspective on its range dynamics. Ensemble modelling of the Last Glacial Maximum (LGM), mid-Holocene, current, and projected 2070 time periods simulates a paleo-historical poleward expansion of suitable bioclimatic space for this species under natural climate change post-LGM, and projects an eastward shift towards 2070. During the LGM, suitable bioclimatic space for A. dichotomum was simulated to be restricted to the equatorward part of its current range. During the Pleistocene/mid-Holocene climate transition period, the species’ range is predicted to have expanded significantly polewards at an average rate of 0.4 km per decade, assuming constant tracking of its optimal climatic niche. By 2070, suitable bioclimatic space is projected to expand further eastward into the summer rainfall region of South Africa, and contract in its equatorward reaches. Simulated post-LGM shifts roughly match expectations based on preliminary phylogenetic information, further supporting the attribution of current population declines to anthropogenic climate change drivers. Equatorward populations are required to migrate south-eastwards at a rate roughly 15 times faster than that calculated for the LGM/mid-Holocene climate transition period to avoid local extirpation. A preliminary analysis of range-wide genetic variation reveals a cline of variation, with generally higher levels in the central and more northerly part of the species distribution, as expected from the proposed paleo-range of the species. A more detailed analysis of the species’ phylogeographic history could be used to test the proposed paleo-range dynamics presented here, and if confirmed, would provide strong support for the use of this species as an indicator of anthropogenic climate change and a powerful case study for testing the implementation of conservation actions.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.715702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2021.715702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:SAGE Publications Authors: Adam Rose; Noah Dormady;This paper provides a meta-analysis of a broad set of recent studies of the economic impacts of climate change mitigation policies. It evaluates the influences of the impacts of causal factors, key economic assumptions and macroeconomic linkages on the outcome of these studies. A quantile regression analysis is also performed on the meta sample, to evaluate the robustness of those key factors throughout the full range of macro findings. Results of these analyses suggest that study results are strongly driven by data inputs, economic assumptions and modeling approaches. However, they are sometimes affected in counterintuitive ways.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/issn0195-6574-ej-vol32-no2-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/issn0195-6574-ej-vol32-no2-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors: Suárez Poch, Francisco Ignacio; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;handle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Cold Spring Harbor Laboratory Funded by:NSF | RESEARCH-PGR: Phenotypic...NSF| RESEARCH-PGR: Phenotypic and Genomic Diversity of North American VitisAbraham Morales-Cruz; Jonas Aguirre-Liguori; Mélanie Massonnet; Andrea Minio; Mirella Zaccheo; Noe Cochetel; Andrew Walker; Summaira Riaz; Yongfeng Zhou; Dario Cantu; Brandon S. Gaut;AbstractXylella fastidiosais a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives, causing economically devastating damage. There is, however, little understanding of the genes that contribute to resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine species,Vitis arizonica, that segregates for resistance toX. fastidiosa. Using genome-wide association, we identified candidate genes that mediate the host response toX. fastidiosainfection. We uncovered evidence that resistance requires genes from multiple genomic regions, based on data from breeding populations and from additionalVitisspecies. We also inferred that resistance evolved more than once in the wild, suggesting that wildVitisspecies may be a rich source for resistance alleles and mechanisms. Finally, resistance inV. arizonicawas climate dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as some genetic markers. This work underscores that pathogen pressure is likely to increase with climate, but it also provides genetic insight and tools for breeding and transforming resistant crops.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United StatesPublisher:American Geophysical Union (AGU) Authors: Smith-Downey, Nicole V.; Randerson, James T.; Eiler, John M.;doi: 10.1029/2006gl026749
The soil sink of molecular hydrogen is the largest and most uncertain term in the global atmospheric H2 budget. Lack of information about the mechanisms regulating this sink limits our ability to predict how atmospheric H2 may respond to future changes in climate or anthropogenic emissions. Here we present the results from a series of laboratory experiments designed to systematically evaluate and describe the temperature and soil moisture dependence of H2 uptake by soils from boreal forest and desert ecosystems. We observed substantial H2 uptake between −4°C and 0°C, a broad temperature optimum between 20°C and 30°C, a soil moisture optimum at approximately 20% saturation, and inhibition of uptake at both low and high soil moisture. A sigmoidal function described the temperature response of H2 uptake by soils between −15°C and 40°C. Based on our results, we present a framework for a model of the soil H2 sink.
Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/4r7096qkData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2006Full-Text: https://doi.org/10.1029/2006GL026749Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006gl026749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/4r7096qkData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2006Full-Text: https://doi.org/10.1029/2006GL026749Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of CaliforniaGeophysical Research LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2006gl026749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Sleeter, Benjamin M; Nelson, Erik; Plantinga, Andrew J.; Cameron, Dick; Marvin, David C;AbstractNatural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios. Forest and conservation land management strategies make up 85% of all NCS emissions reductions by 2050, with agricultural strategies accounting for the remaining 15%. The most severe climate change impacts on ecosystem carbon materialize in the latter half of the century with three scenarios resulting in California ecosystems becoming a net source of carbon emissions under a baseline trajectory. However, NCS provide a strong attenuating effect, reducing land carbon emissions 41–54% by 2100 with total costs of deployment of 752–777 million USD annually through 2050. Rapid implementation of a portfolio of NCS interventions provides long-term investment in protecting ecosystem carbon in the face of climate change driven disturbances. This open-source, spatially-explicit framework can help evaluate risks to NCS carbon storage stability, implementation costs, and overall mitigation potential for NCS at jurisdictional scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-43118-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-43118-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Elsevier BV Authors: Rand, Joseph; Hoen, Ben;Thirty years of North American research on public acceptance of wind energy has produced important insights, yet knowledge gaps remain. This review synthesizes the literature, revealing the following lessons learned. (1) North American support for wind has been consistently high. (2) The NIMBY explanation for resistance to wind development is invalid. (3) Socioeconomic impacts of wind development are strongly tied to acceptance. (4) Sound and visual impacts of wind facilities are strongly tied to annoyance and opposition, and ignoring these concerns can exacerbate conflict. (5) Environmental concerns matter, though less than other factors, and these concerns can both help and hinder wind development. (6) Issues of fairness, participation, and trust during the development process influence acceptance. (7) Distance from turbines affects other explanatory variables, but alone its influence is unclear. (8) Viewing opposition as something to be overcome prevents meaningful understandings and implementation of best practices. (9) Implementation of research findings into practice has been limited. The paper also identifies areas for future research on wind acceptance. With continued research efforts and a commitment toward implementing research findings into developer and policymaker practice, conflict and perceived injustices around proposed and existing wind energy facilities might be significantly lessened.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3747t3q4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEnergy Research & Social ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3747t3q4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaEnergy Research & Social ScienceArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu