- home
- Advanced Search
- Energy Research
- Embargo
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
- Energy Research
- Embargo
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | NASCENTEC| NASCENTManuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; Mariaconcetta Canino; B. Garrido; Caterina Summonte; Stefan Janz;The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Eva Lieberherr; Bernhard Truffer;This paper analyzes the ability of water utilities to contribute to sustainability transition processes. More specifically, we compare the capacity of utilities, embedded in purely public, mixed and largely private governance modes, to innovate. We employ dynamic capabilities as core indicators for innovativeness and therefore as major enabling factors for sustainable sector transitions. We assess the relationship between governance modes and innovation by conducting an in-depth comparative analysis of three water utilities, each within a differing governance mode along the public-to-private continuum: Zurich, Berlin and Leeds. While we find that the private and mixed governance modes have an increased degree of innovativeness, they perform lower in terms of static sustainability criteria than the public mode. We therefore conclude that the impact of privatization on sustainability transitions in the water sector involves multi-dimensional trade-offs between static and dynamic sustainability criteria.
Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 TurkeyPublisher:Springer International Publishing Authors: Ubay, Gözde Gülseven;handle: 20.500.12511/6885
In this study, the main purpose is to capture people and companies’ attention upon wind energy issue. For this target, both onshore and offshore wind plant criteria and related risk issues are studied. In this framework, firstly a wide theoretical review is presented on onshore and offshore wind energy. Afterward, the pros and cons of onshore and offshore wind energy were discussed. At this point, these features are viewed from the perspective of developing countries. According to the study’s results, it is identified that although onshore wind energy plants have a comparative advantage in terms of cost, when considering efficiency offshore wind energy is one step ahead. In this context, it is determined that investors can encounter many problems when investing in onshore or offshore wind energy projects. Therefore, it is suggested that to invest in onshore wind energy plants, the country’s legal system and public awareness must be improved. In addition to this, for invest in offshore wind energy plants, it is proposed that countries should invest in training labor force and technology in order to minimize possible costs.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryPart of book or chapter of book . 2021Data sources: İstanbul Medipol University Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-72288-3_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryPart of book or chapter of book . 2021Data sources: İstanbul Medipol University Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-72288-3_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Giorgio Belluardo; Roberto Galleano; Willem Zaaiman; Mauro Pravettoni; Martin Halwachs; Raffaele Fucci; Alexander Drobisch; Matthias Friederichs; Erik Haverkamp; Alexander Phinikarides; Gabi Friesen;handle: 2066/199855
Abstract Latest trends in the photovoltaic sector see the use of innovative photovoltaic technologies with extended spectral responsivity ranging from 300 to 1200 nm for non-concentrating terrestrial applications, and to 1800 nm for concentrating PV and space applications. As a consequence, an update of the IEC 60904-9 standard is ongoing with a definition of new spectral ranges for the assessment of the spectral match. This poses new challenges to laboratories and research centers on whether or not they still are able to accurately measure the spectral mismatch of their sun simulator in the newly-defined spectral regions. Prior to that, there is a need to understand if the commercially available spectroradiometers are ready to extend their measurement range as prescribed by the forthcoming new standard. This paper analyses two options for an extension of the spectrum characterisation of solar simulators to 300–1200 nm and compares them in terms of spectral match of global normal irradiance (GNI) spectra acquired under natural sunlight by eight spectroradiometers during the 6th European Spectroradiometer Intercomparison. The acquired spectra are also compared in terms of an index of consistency of the spread of the measured spectra with the estimated measurement uncertainty, hereafter named as performance statistics E n . Results show that all investigated laboratories assure the equivalence of the spectral match classification well below the 25% limit corresponding to class-A simulators. When considering the more stringent class-A+ corresponding to a 12.5% limit, one of the two considered options that rearranges the 300–1200 nm spectral range into 6 bands appears to still assure the equivalence of the class A+ limits among considered instruments. The E n performance index analysis highlights some inconsistencies with the estimated measurement uncertainty or instrument drifts from the expected performance, and the need of further improvements in calibration, set up and measurement procedures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021Publisher:Fen Bilimleri Enstitüsü Authors: Tarican, Ayşe;SUMMARY SOLAR CELL POWER PLANTS Extensive research and development activities are currently being conducted ali över the world in the area of utilizing renewable energy resources. The interest of the utilization of local renewable energy resources for devoloping countries has been enhanced by the dramatic increase of oil prices in the early seventies. Öne of the most promising renewable resources is the solar energy. The recent developments in the solid state industry accompanied by a parallel increase in energy prices and the environmental restrictions as well as the need for reliable sources of energy lead to the consideration and assessment of new sources of energy which can secure the needs of public with a minimum impact on the environment. An important candidate is the photovoltaic (PV) source of energy, where the solar radiation is directly converted into electricity that can either be residentially used as a local self-sufficient source such as telecommunication, vaccine refrigeration, lighting, battery charging and water pumping applications ör interconnected to available AÇ public grid. in this work about the photovoltaic systems that are connected to the grid, the voltage obtained from the array is converted to three phase sinusoidal voltage by a static inverter vvhich supplies the public grid and the system is simulated. A utility - interactive PV system (Figüre 1) consists of a variety of subsystems: a PV array subsystem, a power conditioning subsystem, a utility interconnection subsystem, and control subsystem. The PV array subsystem converts solar energy into direct current (DC) electrical povver and delivers it to the power conditioning subsystem (PCS) through the DC interface. The array subsystem also provides protection and necessary electrical isolation between the PCS and the array, and may include experimental instrumentation for monitoring the performance of the array. The utility interconnection subsystem, through the alternating current (AÇ) interface with the PCS, provides synchronization with the utility and, if necessary, acts to electrically isolate the PV system from the utility. The control subsystem, operating through the PCS, oversees the performance of the entire PV system. it also enables overall coordination of the system protection, communicates status information to the utility dispatch center, and, if desired, provides an information and tracking VIIfeedback loop with the PV array. in central PV stations, the PCS may also processes operational commands from the utility dispatch center. in operation, the PCS converts DC power from the array into AÇ povver, provides optimum amount of power to be extracted from the PV array for any given insolation and environmental conditions, matches frequency and phase of the voltage desired by the utility, and provides. protection not only for its internal components but also for the equipment external to the PCS..i, UTILITYCONTROL AND rı^MTi,TINFORMATION SIGNALS CONTKOL ^ SUBSYSTEM rJ^IS PVPOWER CON-UTILITY^- ARRAY-*- DITIONING -+.INTERCON.*~ SOLAR l SUBSYSTEMSUBSYSTEM SUBSYSTEM UTILITY ENERGY4 4 Figüre 1. Block Diagram of a Utility-Interactive Photovoltaic System To achieve a compatible integration of the PV system with the utility, it is essential that the design of the PCS accommodate the dynamic range of interactions between the PV system and the utility grid. These arise from changes in both grid conditions and the output of the PV array. The proper and safe interconnections of PV subsystems require not only the identifications of their mutual functional constraints, but also a knovvledge of how to select ör design the PV subsystems vvithin such constraints. These constraints, therefore, are important in the selection ör evaluation of a PCS that is suitable for central station PV systems. A solar celi (SC) generator possesses a line of maximum povver, and it is most desirable that the operation of the load line should be close to the maximum povver line of the generator. in such a case, good matching exists between the generator and the load for the best performance of the system and maximum utilization of the solar cells. The VIII-Toperating points of the photovoltaic system can generally be accomplished by either carefully selecting the I-V characteristics of the load to be connected to the SC generator, ör incorporating an electronic control device (a maximum-power- point-tracker (MPPT)), which provides the necessary impedance matching the SC generator and the inclusion of a MPPT in PV systems depends on several factors: load type and profile; climatic conditions; the fractional cost of the MPPT and its efficiency; and the gain in energy. An electrical circuit design can be simulated before it is actually built, and necessary changes may be done without touching any hardvvare. Any design that is thought to be complete can be checked easily. Building an electrical circuit is the most practical way to check it, but it is expensive and time consuming. it is useful to simulate the design carefully by using a computer program. Figüre 2 shows the PV system simulated by using PSpice which is a member of the Spice (Simulation Program with Integrated Circuit Emphasis) family of circuit simulators. The solar celi is a semiconductor device that converts the solar radiation directly to electrical energy. The celi is a nonlinear device and can be represented by the I-V terminal characteristics, Figüre 3, ör by an approximate electrical equivalent circuit as shown in Figüre 4. The solar celi is an electrical celi of low level voltage and power, therefore the cells are in series and in parallel combinations in order to form an array of the desired voltage and power levels. The I-V equation of a single celi is given by: I = İL - Is [exp[(q/nkT). (V + RsI) - l] ] where İL is the light generated current, Is is the saturation current, kT/q is the thermal voltage, n is the perfection factor, Rs is the series resistance of the celi. For each characteristic curve there is an optimum operating point with respect to the power. Proper load selection allows the maximum power to be transferred. in this work, to convert the DC voltage into three phase sinusoidal voltage, a three-phase bridge inverter is used. The power circuit of a three-phase bridge inverter using thyristors is shown in Figüre 5, where commutation and snubber circuits are omitted for simplicity. The inverter consists of three half bridge units where the upper and lower thyristors of each unit are switched on and off alternately for 180° intervals. The three half-bridges are phase-shifted by 120°. The inverter output voltage wave shapes are determined by the circuit configuration and switching pattern. These waves are rich in harmonics. IX-T* *T`U_ -mrrru. rv» <D-^ PU ARRAY INUERTER UT ILIT V QRID INPUT FILTER OUTPUT FILTER Figure 2. Block diagram of the PV system simulated by using PSpice Figure 3. Characteristics of a solar cellRs I î I * * l IU<2pİ İDippSRCLoad) iii»»l Figüre 4. Solar celi equivalent circuit The inverter is provided with a filter, to make the output voltage (nearly) sinusoidal. in this study, a band-pass filter is chosen, as it is a simple and economical solution for the system. The transformer coupling to the grid supplies the filtered output voltage of the inverter into the grid. The model of ali components of the system is constituted by using their equivalent circuits and the system is simulated completely step by step. 178
YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::2efe998278a2b31cb615298b1b2c40b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::2efe998278a2b31cb615298b1b2c40b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Stefano Campanari; S. Cerniauskas; S. Cerniauskas; Martin Robinius; Paolo Colbertaldo; Detlef Stolten; Detlef Stolten; T. Grube;handle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Funded by:EC | NASCENTEC| NASCENTManuel Schnabel; Sergi Hernández; J. López-Vidrier; Philipp Löper; Mariaconcetta Canino; B. Garrido; Caterina Summonte; Stefan Janz;The optical and photovoltaic properties of Si NCs / SiC multilayers (MLs) are investigated using a membrane-based solar cell structure. By removing the Si substrate in the active cell area, the MLs are studied without any bulk Si substrate contribution. The occurrence is confirmed by scanning electron microscopy and light-beam induced current mapping . Optical characterization combined with simulations allows us to determine the absorption within the ML absorber layer, isolated from the other cell stack layers. The results indicate that the absorption at wavelengths longer than 800 nm is only due to the SiC matrix. The measured short-circuit current is significantly lower than that theoretically obtained from absorption within the ML absorber, which is ascribed to losses that limit carrier extraction. The origin of these losses is discussed in terms of the material regions where recombination takes place. Our results indicate that carrier extraction is most efficient from the Si NCs themselves, whereas recombination is strongest in SiC and residual a-Si domains . Together with the observed onset of the external quantum efficiency (EQE) at 700-800 nm, this fact is an evidence of quantum confinement in Si NCs embedded in SiC on device level.
CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; +1 AuthorsBatidzirai, Batidzirai; van der Hilst, Floortje; Meerman, Hans; Junginger, Martin H.; Faaij, André P C;doi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Eva Lieberherr; Bernhard Truffer;This paper analyzes the ability of water utilities to contribute to sustainability transition processes. More specifically, we compare the capacity of utilities, embedded in purely public, mixed and largely private governance modes, to innovate. We employ dynamic capabilities as core indicators for innovativeness and therefore as major enabling factors for sustainable sector transitions. We assess the relationship between governance modes and innovation by conducting an in-depth comparative analysis of three water utilities, each within a differing governance mode along the public-to-private continuum: Zurich, Berlin and Leeds. While we find that the private and mixed governance modes have an increased degree of innovativeness, they perform lower in terms of static sustainability criteria than the public mode. We therefore conclude that the impact of privatization on sustainability transitions in the water sector involves multi-dimensional trade-offs between static and dynamic sustainability criteria.
Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 TurkeyPublisher:Springer International Publishing Authors: Ubay, Gözde Gülseven;handle: 20.500.12511/6885
In this study, the main purpose is to capture people and companies’ attention upon wind energy issue. For this target, both onshore and offshore wind plant criteria and related risk issues are studied. In this framework, firstly a wide theoretical review is presented on onshore and offshore wind energy. Afterward, the pros and cons of onshore and offshore wind energy were discussed. At this point, these features are viewed from the perspective of developing countries. According to the study’s results, it is identified that although onshore wind energy plants have a comparative advantage in terms of cost, when considering efficiency offshore wind energy is one step ahead. In this context, it is determined that investors can encounter many problems when investing in onshore or offshore wind energy projects. Therefore, it is suggested that to invest in onshore wind energy plants, the country’s legal system and public awareness must be improved. In addition to this, for invest in offshore wind energy plants, it is proposed that countries should invest in training labor force and technology in order to minimize possible costs.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryPart of book or chapter of book . 2021Data sources: İstanbul Medipol University Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-72288-3_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryPart of book or chapter of book . 2021Data sources: İstanbul Medipol University Institutional Repositoryhttps://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-72288-3_20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Informa UK Limited Authors: Setareh Katircioglu; Salih Katircioglu;handle: 11467/6089
This article searches the effects of tourism development onemission pollutants in Malta using (1) the autoregressivedistributed lag approach and (2) two datasets which are annualdata from 1971 to 2018 and quarterly data from 1990Q1 tı2018Q4 as per data availability. Findings confirm that tourism,energy usage, and carbon dioxide emissions are in a long-termequilibrium relationship; carbon emissions converge rapidlytowards the long-term equilibrium path through tourism andenergy consumption channels. Findings also reveal that growthin tourism results in significant changes in energy consumptionand, therefore, in CO2emissions. Tourism has positive effects oncarbon emissions in shorter periods. Still, these effects turn out tobe harmful in the more extended periods beyond the peak pointof carbon emissions which correspond to 1,063,213 milliontourists. Therefore, this study strongly confirms the existence ofan inverted U-shaped Environmental Kuznets Curve hypothesisfor Malta.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02642069.2022.2086977&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Giorgio Belluardo; Roberto Galleano; Willem Zaaiman; Mauro Pravettoni; Martin Halwachs; Raffaele Fucci; Alexander Drobisch; Matthias Friederichs; Erik Haverkamp; Alexander Phinikarides; Gabi Friesen;handle: 2066/199855
Abstract Latest trends in the photovoltaic sector see the use of innovative photovoltaic technologies with extended spectral responsivity ranging from 300 to 1200 nm for non-concentrating terrestrial applications, and to 1800 nm for concentrating PV and space applications. As a consequence, an update of the IEC 60904-9 standard is ongoing with a definition of new spectral ranges for the assessment of the spectral match. This poses new challenges to laboratories and research centers on whether or not they still are able to accurately measure the spectral mismatch of their sun simulator in the newly-defined spectral regions. Prior to that, there is a need to understand if the commercially available spectroradiometers are ready to extend their measurement range as prescribed by the forthcoming new standard. This paper analyses two options for an extension of the spectrum characterisation of solar simulators to 300–1200 nm and compares them in terms of spectral match of global normal irradiance (GNI) spectra acquired under natural sunlight by eight spectroradiometers during the 6th European Spectroradiometer Intercomparison. The acquired spectra are also compared in terms of an index of consistency of the spread of the measured spectra with the estimated measurement uncertainty, hereafter named as performance statistics E n . Results show that all investigated laboratories assure the equivalence of the spectral match classification well below the 25% limit corresponding to class-A simulators. When considering the more stringent class-A+ corresponding to a 12.5% limit, one of the two considered options that rearranges the 300–1200 nm spectral range into 6 bands appears to still assure the equivalence of the class A+ limits among considered instruments. The E n performance index analysis highlights some inconsistencies with the estimated measurement uncertainty or instrument drifts from the expected performance, and the need of further improvements in calibration, set up and measurement procedures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Master thesis 2021Publisher:Fen Bilimleri Enstitüsü Authors: Tarican, Ayşe;SUMMARY SOLAR CELL POWER PLANTS Extensive research and development activities are currently being conducted ali över the world in the area of utilizing renewable energy resources. The interest of the utilization of local renewable energy resources for devoloping countries has been enhanced by the dramatic increase of oil prices in the early seventies. Öne of the most promising renewable resources is the solar energy. The recent developments in the solid state industry accompanied by a parallel increase in energy prices and the environmental restrictions as well as the need for reliable sources of energy lead to the consideration and assessment of new sources of energy which can secure the needs of public with a minimum impact on the environment. An important candidate is the photovoltaic (PV) source of energy, where the solar radiation is directly converted into electricity that can either be residentially used as a local self-sufficient source such as telecommunication, vaccine refrigeration, lighting, battery charging and water pumping applications ör interconnected to available AÇ public grid. in this work about the photovoltaic systems that are connected to the grid, the voltage obtained from the array is converted to three phase sinusoidal voltage by a static inverter vvhich supplies the public grid and the system is simulated. A utility - interactive PV system (Figüre 1) consists of a variety of subsystems: a PV array subsystem, a power conditioning subsystem, a utility interconnection subsystem, and control subsystem. The PV array subsystem converts solar energy into direct current (DC) electrical povver and delivers it to the power conditioning subsystem (PCS) through the DC interface. The array subsystem also provides protection and necessary electrical isolation between the PCS and the array, and may include experimental instrumentation for monitoring the performance of the array. The utility interconnection subsystem, through the alternating current (AÇ) interface with the PCS, provides synchronization with the utility and, if necessary, acts to electrically isolate the PV system from the utility. The control subsystem, operating through the PCS, oversees the performance of the entire PV system. it also enables overall coordination of the system protection, communicates status information to the utility dispatch center, and, if desired, provides an information and tracking VIIfeedback loop with the PV array. in central PV stations, the PCS may also processes operational commands from the utility dispatch center. in operation, the PCS converts DC power from the array into AÇ povver, provides optimum amount of power to be extracted from the PV array for any given insolation and environmental conditions, matches frequency and phase of the voltage desired by the utility, and provides. protection not only for its internal components but also for the equipment external to the PCS..i, UTILITYCONTROL AND rı^MTi,TINFORMATION SIGNALS CONTKOL ^ SUBSYSTEM rJ^IS PVPOWER CON-UTILITY^- ARRAY-*- DITIONING -+.INTERCON.*~ SOLAR l SUBSYSTEMSUBSYSTEM SUBSYSTEM UTILITY ENERGY4 4 Figüre 1. Block Diagram of a Utility-Interactive Photovoltaic System To achieve a compatible integration of the PV system with the utility, it is essential that the design of the PCS accommodate the dynamic range of interactions between the PV system and the utility grid. These arise from changes in both grid conditions and the output of the PV array. The proper and safe interconnections of PV subsystems require not only the identifications of their mutual functional constraints, but also a knovvledge of how to select ör design the PV subsystems vvithin such constraints. These constraints, therefore, are important in the selection ör evaluation of a PCS that is suitable for central station PV systems. A solar celi (SC) generator possesses a line of maximum povver, and it is most desirable that the operation of the load line should be close to the maximum povver line of the generator. in such a case, good matching exists between the generator and the load for the best performance of the system and maximum utilization of the solar cells. The VIII-Toperating points of the photovoltaic system can generally be accomplished by either carefully selecting the I-V characteristics of the load to be connected to the SC generator, ör incorporating an electronic control device (a maximum-power- point-tracker (MPPT)), which provides the necessary impedance matching the SC generator and the inclusion of a MPPT in PV systems depends on several factors: load type and profile; climatic conditions; the fractional cost of the MPPT and its efficiency; and the gain in energy. An electrical circuit design can be simulated before it is actually built, and necessary changes may be done without touching any hardvvare. Any design that is thought to be complete can be checked easily. Building an electrical circuit is the most practical way to check it, but it is expensive and time consuming. it is useful to simulate the design carefully by using a computer program. Figüre 2 shows the PV system simulated by using PSpice which is a member of the Spice (Simulation Program with Integrated Circuit Emphasis) family of circuit simulators. The solar celi is a semiconductor device that converts the solar radiation directly to electrical energy. The celi is a nonlinear device and can be represented by the I-V terminal characteristics, Figüre 3, ör by an approximate electrical equivalent circuit as shown in Figüre 4. The solar celi is an electrical celi of low level voltage and power, therefore the cells are in series and in parallel combinations in order to form an array of the desired voltage and power levels. The I-V equation of a single celi is given by: I = İL - Is [exp[(q/nkT). (V + RsI) - l] ] where İL is the light generated current, Is is the saturation current, kT/q is the thermal voltage, n is the perfection factor, Rs is the series resistance of the celi. For each characteristic curve there is an optimum operating point with respect to the power. Proper load selection allows the maximum power to be transferred. in this work, to convert the DC voltage into three phase sinusoidal voltage, a three-phase bridge inverter is used. The power circuit of a three-phase bridge inverter using thyristors is shown in Figüre 5, where commutation and snubber circuits are omitted for simplicity. The inverter consists of three half bridge units where the upper and lower thyristors of each unit are switched on and off alternately for 180° intervals. The three half-bridges are phase-shifted by 120°. The inverter output voltage wave shapes are determined by the circuit configuration and switching pattern. These waves are rich in harmonics. IX-T* *T`U_ -mrrru. rv» <D-^ PU ARRAY INUERTER UT ILIT V QRID INPUT FILTER OUTPUT FILTER Figure 2. Block diagram of the PV system simulated by using PSpice Figure 3. Characteristics of a solar cellRs I î I * * l IU<2pİ İDippSRCLoad) iii»»l Figüre 4. Solar celi equivalent circuit The inverter is provided with a filter, to make the output voltage (nearly) sinusoidal. in this study, a band-pass filter is chosen, as it is a simple and economical solution for the system. The transformer coupling to the grid supplies the filtered output voltage of the inverter into the grid. The model of ali components of the system is constituted by using their equivalent circuits and the system is simulated completely step by step. 178
YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::2efe998278a2b31cb615298b1b2c40b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert YÖK Açık Bilim - CoH... arrow_drop_down YÖK Açık Bilim - CoHE Open ScienceMaster thesis . 2021License: CC BYData sources: YÖK Açık Bilim - CoHE Open Scienceadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10208::2efe998278a2b31cb615298b1b2c40b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu