- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- 11. Sustainability
- 12. Responsible consumption
- 6. Clean water
- Energy Research
- Open Access
- Closed Access
- 11. Sustainability
- 12. Responsible consumption
- 6. Clean water
Research data keyboard_double_arrow_right Dataset 2019Publisher:Organisation for Economic Co-Operation and Development (OECD) Authors: National Inventory Submissions 2019 to the United Nations Framework Convention on Climate Change;This dataset presents trends in man-made emissions of major greenhouse gases and emissions by gas.
https://stats.oecd.o... arrow_drop_down https://stats.oecd.org/Index.a...Dataset . 2019License: See "Other relevant information"Data sources: EnerMapsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::bc4e42c27573b75feb5afee225dc27ce&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://stats.oecd.o... arrow_drop_down https://stats.oecd.org/Index.a...Dataset . 2019License: See "Other relevant information"Data sources: EnerMapsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::bc4e42c27573b75feb5afee225dc27ce&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hornick, Thomas; Mach, Elke; Grossart, Hans-Peter;We simulated an experimental summer storm in large-volume (~1200 m3, ~16m depth) enclosures in Lake Stechlin (https://www.lake-lab.de) by mixing deeper water masses from the meta- and hypolimnion into the mixed layer (epilimnion). The mixing included the disturbance of a deep chlorophyll maximum (DCM) which was present at the same time of the experiment in Lake Stechlin and situated in the metalimnion of each enclosure during filling. Size-fractionated Bacterial Protein Production (BPP) of particle associated (PA, >3.0 µm) and free-living bacteria (FL, 0.2-3.0 µm) (14C-Leu incorporation) as well as abundances of PA (microscopy of DAPI stained cells on 3.0 µm polycarbonate filters) and FL heterotrophic prokaryotes and picocyanobacteria (flow cytometry of SYBR green I stained cells) were monitored for 42 days after the experimental disturbance event. Mixing increased bacterial abundance and production about 3 weeks after mixing, which was associated to a mixing-induced stimulation of phytoplankton growth in the mixed enclosures compared to the controls. Simultaneously, decreased abundances of picocyanobacteria could be observed in mixed enclosures. Empty cells = NAFurther Project information: Core Facility grant; Award: GE 1775/2-1
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.930921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.930921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Phillis, Yannis;The SAFE model (Sustainability Assessment by Fuzzy Evaluation, http://www.sustainability.tuc.gr/) estimates the the overall sustainability of countries using relevant indicator data. The files (compressed, tab-delimited text) contain data on 69 sustainability indicators for 164 countries from 1990 to 2016. Three data sets are provided: 1) raw data as time series (810 out of a total of 69x164=11,316 time series are missing); 2) time series transformed into single values and normalized on a 0-1 scale from unsustainable to sustainable; 3) SAFE model inputs: a data set in which most of the missing values are imputed; for some countries certain indicators are intentionally omitted, estimated, or modified as explained in the article. Third-party sources of raw data are given in the article's supplementary Appendix E.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Pichler, Anton; Lafond, François;#### Note: #### An updated version of these data including data on biofuels and fuels from waste is available [here](https://pub.uni-bielefeld.de/record/2950291). The extended version also offers a package of R-scripts that have been used to reproduce the statistical analysis presented in [Hötte, Pichler, Lafond (2021): The rise of science in low-carbon energy technologies](https://doi.org/10.1016/j.rser.2020.110654). This data publication offers data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: [https://creativecommons.org/licenses/by/4.0/legalcode](https://creativecommons.org/licenses/by/4.0/legalcode) Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this data publication and the following paper. Kerstin Hötte, Anton Pichler, François Lafond: *The rise of science in low-carbon energy technologies*, Renewable and Sustainable Energy Reviews, Volume 139, 2021 [https://doi.org/10.1016/j.rser.2020.110654](https://doi.org/10.1016/j.rser.2020.110654) ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate change. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources") and Y02E03 ("Energy generation of nuclear origin") technologies are used. 8 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: [10.5281/zenodo.3685972](10.5281/zenodo.3685972) The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 8 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fiels were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assiged. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) #### Note: #### The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - Number of papers in MAG: 179,083,029 - Number of all patents: 10,160,667 - Number of citing patents: 2,058,233 - Number of cited papers: 4,404,088 - Number of citation links from patents to papers: 34,959,193 LCET subset: - Number of LCET patents: 57,530 - Number of citing LCET patents: 16,674 - Number of cited papers: 53,509 - Number of citation links from LCET patents to papers: 151,253 - Number of citation links from LCET patents to other patents: 567,274 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >250,000 hierarchical CPC classes, 8 LCET types Citation links: - Reference type, citation type, reliability score #### If you have further questions about the data or suggestions, please contact: kerstin.hotte@oxfordmartin.ox.ac.uk ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld UniversityAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld UniversityAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Mendeley Authors: Paula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); +6 AuthorsPaula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); Claire Granier (11024228); Nicolás Huneeus (11024231); Mauricio Osses Alvarado (11024234); Enrique Puliafito (11024237); Néstor Rojas (11024240); Laura Dawidowski (5765333);PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3 and SO2) from anthropogenic sources in South America, for the period 2014–2016. The dataset was developed on the basis of the existing data on the global dataset CAMS-GLOB-ANT v4.1 (developed by joining CEDS trends and EDGARv4.3.2 historical data), enriching it with derived data from locally available emission inventories for Argentina, Chile and Colombia. The inventories are presented as NetCDF4 files, one for each species and year, gridded with a spatial resolution of 0.1° x 0.1° covering the domain 32° W–120° W and 34° N–58° S. Each file contains 12 variables corresponding to the emissions in Tg/y from the following categories, which are organized and denominated using the nomenclature given by CAMS: thermal power plants (ENE); residential and commercial combustion (RES); road transportation (TRO); non-road transportation (TNR); fugitive emissions (FEF); industries (including fuel consumption in manufacturing industries and construction, refineries, industrial processes and solvent and other products use) (IND); agricultural soils (AGS); agriculture livestock (AGL); inland navigation (SHP); international navigation (SHP-INT); waste (including solid waste, wastewater and incineration) (SWD); and the sum of all sectors (SUM).
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Organisation for Economic Co-Operation and Development (OECD) Authors: National Inventory Submissions 2019 to the United Nations Framework Convention on Climate Change;This dataset presents trends in man-made emissions of major greenhouse gases and emissions by gas.
https://stats.oecd.o... arrow_drop_down https://stats.oecd.org/Index.a...Dataset . 2019License: See "Other relevant information"Data sources: EnerMapsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::bc4e42c27573b75feb5afee225dc27ce&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://stats.oecd.o... arrow_drop_down https://stats.oecd.org/Index.a...Dataset . 2019License: See "Other relevant information"Data sources: EnerMapsAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=enermaps____::bc4e42c27573b75feb5afee225dc27ce&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hornick, Thomas; Mach, Elke; Grossart, Hans-Peter;We simulated an experimental summer storm in large-volume (~1200 m3, ~16m depth) enclosures in Lake Stechlin (https://www.lake-lab.de) by mixing deeper water masses from the meta- and hypolimnion into the mixed layer (epilimnion). The mixing included the disturbance of a deep chlorophyll maximum (DCM) which was present at the same time of the experiment in Lake Stechlin and situated in the metalimnion of each enclosure during filling. Size-fractionated Bacterial Protein Production (BPP) of particle associated (PA, >3.0 µm) and free-living bacteria (FL, 0.2-3.0 µm) (14C-Leu incorporation) as well as abundances of PA (microscopy of DAPI stained cells on 3.0 µm polycarbonate filters) and FL heterotrophic prokaryotes and picocyanobacteria (flow cytometry of SYBR green I stained cells) were monitored for 42 days after the experimental disturbance event. Mixing increased bacterial abundance and production about 3 weeks after mixing, which was associated to a mixing-induced stimulation of phytoplankton growth in the mixed enclosures compared to the controls. Simultaneously, decreased abundances of picocyanobacteria could be observed in mixed enclosures. Empty cells = NAFurther Project information: Core Facility grant; Award: GE 1775/2-1
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.930921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.930921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Raptis, Catherine;A global dataset of steam-electric power generating units with location, technical information, performance characteristics and associated environmental stressors (GHG emissions, freshwater consumption, thermal emissions to freshwater) as well as stressor intensities (per GJ el. produced).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/23bndmtc3s.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Mendeley Authors: Phillis, Yannis;The SAFE model (Sustainability Assessment by Fuzzy Evaluation, http://www.sustainability.tuc.gr/) estimates the the overall sustainability of countries using relevant indicator data. The files (compressed, tab-delimited text) contain data on 69 sustainability indicators for 164 countries from 1990 to 2016. Three data sets are provided: 1) raw data as time series (810 out of a total of 69x164=11,316 time series are missing); 2) time series transformed into single values and normalized on a 0-1 scale from unsustainable to sustainable; 3) SAFE model inputs: a data set in which most of the missing values are imputed; for some countries certain indicators are intentionally omitted, estimated, or modified as explained in the article. Third-party sources of raw data are given in the article's supplementary Appendix E.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/n8rbrmnzf4.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 GermanyPublisher:Bielefeld University Authors: Hötte, Kerstin; Pichler, Anton; Lafond, François;#### Note: #### An updated version of these data including data on biofuels and fuels from waste is available [here](https://pub.uni-bielefeld.de/record/2950291). The extended version also offers a package of R-scripts that have been used to reproduce the statistical analysis presented in [Hötte, Pichler, Lafond (2021): The rise of science in low-carbon energy technologies](https://doi.org/10.1016/j.rser.2020.110654). This data publication offers data about low-carbon energy technology (LCET) patents and citations links to the scientific literature. This data publication contains different data sets (in .RData and (long-term archivable) .tsv format). Further information about each data set is provided in more detail below. - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID, Paper year, cited (binary 0-1, indicates whether the paper is cited by a patent). - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number, Patent year (grant year), CPC class, Patent date, Patent title, citing_to_science (binary 0-1, indicates whether the patent is citing to science). - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number, Patent year (grant year), Technology type, CPC class, Patent date, Patent title. - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing, cited (Patent numbers). - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number, Paper ID, Patent year, Paper year, Technology type, WoS field, Patent title, Paper title, DOI, Confidence Score, Citation type, Reference type, Journal/ Conf. name, Journal ID, Conference ID, CPC class, Patent date, US patent. ### License and terms of use ### This data is licensed under the CC BY 4.0 license. See: [https://creativecommons.org/licenses/by/4.0/legalcode](https://creativecommons.org/licenses/by/4.0/legalcode) Please find the full license text below. If you want to use the data, do not forget to give appropriate credit by citing this data publication and the following paper. Kerstin Hötte, Anton Pichler, François Lafond: *The rise of science in low-carbon energy technologies*, Renewable and Sustainable Energy Reviews, Volume 139, 2021 [https://doi.org/10.1016/j.rser.2020.110654](https://doi.org/10.1016/j.rser.2020.110654) ### LCET definition and concepts ### LCET are defined by Cooperative Patent Classification (CPC) codes. CPC offers "tags" that are assigned to patents that are useful for the adaptation and mitigation of climate change. LCET are identified by YO2E codes, i.e. that are assigned to technologies that contribute to the "REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION". Only the subset of Y02E01 ("Energy generation through renewable energy sources") and Y02E03 ("Energy generation of nuclear origin") technologies are used. 8 different LCET are distinguished: Solar PV, Wind, Solar thermal, Ocean power, Hydroelectric, Geothermal, Nuclear fission and Nuclear fusion. More information about the Y02-tags can be found in: Veefkind, Victor, et al. "A new EPO classification scheme for climate change mitigation technologies." World Patent Information 34.2 (2012): 106-111. DOI: [https://doi.org/10.1016/j.wpi.2011.12.004](https://doi.org/10.1016/j.wpi.2011.12.004) ### Data sources and compilation ### The data was generated by the merge of different data sets. 1.) Patent data from USPTO was downloaded here: https://bulkdata.uspto.gov/ 2.) Complementary data on grant year and patent title was taken from: https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data 3.) Citations to science come from the Reliance on Science (RoS) data set https://zenodo.org/record/3685972 (v23, Feb. 24, 2020) DOI: [10.5281/zenodo.3685972](10.5281/zenodo.3685972) The directory ("code") offers the R-scripts that were used to process MAG data and to link it to patent data. The header of the R-scripts offer additional technical information about the subsetting procedures and data retrieval. For more information about the patent data, see: Pichler, A., Lafond, F. & J, F. D. (2020), Technological interdependencies predict innovation dynamics, Working paper pp. 1–33. URL: [https://arxiv.org/abs/2003.00580](https://arxiv.org/abs/2003.00580) For more information about MAG data, see: Marx, Matt, and Aaron Fuegi. "Reliance on science: Worldwide front‐page patent citations to scientific articles." Strategic Management Journal 41.9 (2020): 1572-1594. DOI: [https://doi.org/10.1002/smj.3145](https://doi.org/10.1002/smj.3145) Marx, Matt and Fuegi, Aaron, Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles. Boston University Questrom School of Business Research Paper No. 3331686. DOI: [http://dx.doi.org/10.2139/ssrn.3331686 ](http://dx.doi.org/10.2139/ssrn.3331686 ) ### Detailed information about the data ### - "all_papers.RData" : Data on scientific papers from Microsoft Academic Graph (MAG), 3 columns: Paper ID: Unique paper-identifier used by MAG Paper year: Year of publication cited: binary 0-1, indicates whether the paper is cited by a patent, citation links are made in the text body and front-page of the patent, and added by examiners and applicants. - "all_patents.RData" : Data on USPTO utility patents, 6 columns: Patent number: Number given by USPTO. Can be used for manual patent search in http://patft.uspto.gov/netahtml/PTO/srchnum.htm (numeric) Patent year: Year when the patent was granted (numeric) CPC class: Detailed 8-digit CPC code (numeric) Patent date: Exact date of patent granting (numeric) Patent title: Short title (character) citing_to_science: binary 0-1, indicates whether the patent is citing to science as identified by citation links in RoS. (numeric) - "LCET_patents.RData" : Subset of LCET patents, 6 columns: Patent number: (numeric) Patent year: (numeric) Technology type: Short code used to tag 8 different types of LCET (pv, (nuclear) fission, (solar) thermal, (nuclear) fusion, wind, geo(termal), sea (ocean power), hydro) (character) CPC class: Detailed 8-digit CPC code (character) Patent date: (numeric) Patent title: (numeric) - "LCET_patent_citations.RData" : Citations from LCET patents to other patents, 2 columns: citing: Number of citing patent (numeric) cited: Number of cited patent (numeric) - "LCET_subset_with_metainfo_final.RData" : Citations from LCET patents to scientific papers from MAG, complemented by meta-information on patents and papers, 18 columns: Patent number: see above (numeric) Paper ID: see above (numeric) Patent year: see above (numeric) Paper year: see above (numeric) Technology type: see above (character) WoS field: Web of Science field of research, WoS fiels were probabilistically assigned to papers and are used as given by RoS (character) Patent title: see above (character) Paper title: Title of scientific article (character) DOI: Paper DOI if available (character) Confidence Score: Reliability score of citation link (numeric). Links were probabilistically assiged. See Marx and Fuegi 2019 for further detail. Citation type: Indicates whether citation made in text body of patent document or its front page (character) Reference type: Examiner or applicant added citation link (or unknown). (character) Journal/ Conf. name: Name of journal or conference proceeding where the cited paper was published (character) Journal ID: Journal identifier in MAG (numeric) Conference ID: Conference identifier in MAG (numeric) CPC class: see above (character) Patent date: see above (numeric) US patent: binary US-patent indicator as provided by RoS (numeric) #### Note: #### The citation links were probabilistically retrieved. During the analysis, we identified manually some false-positives are removed them from the "LCET_subset_with_metainfo_final.RData" data set. The list is available, too: "list_of_false_positives.tsv" We do not claim to have a perfect coverage but expect a precision of >98% as described by Marx and Fuegi 2019. ### Statistics about the data ### Full data set: - Number of papers in MAG: 179,083,029 - Number of all patents: 10,160,667 - Number of citing patents: 2,058,233 - Number of cited papers: 4,404,088 - Number of citation links from patents to papers: 34,959,193 LCET subset: - Number of LCET patents: 57,530 - Number of citing LCET patents: 16,674 - Number of cited papers: 53,509 - Number of citation links from LCET patents to papers: 151,253 - Number of citation links from LCET patents to other patents: 567,274 Meta-information: Papers: - Publication year, 251 Web-of-Science (WoS) categories, Journal/ conference proceedings name, DOI, Paper title Patents: - Grant year, >250,000 hierarchical CPC classes, 8 LCET types Citation links: - Reference type, citation type, reliability score #### If you have further questions about the data or suggestions, please contact: kerstin.hotte@oxfordmartin.ox.ac.uk ### License issues ### Terms of use of the source data: - Reliance on Science data [https://zenodo.org/record/3685972](https://zenodo.org/record/3685972), Open Data Commons Attribution License (ODC-By) v1.0, https://opendatacommons.org/licenses/by/1.0/ - "Google Patents Public Data” by IFI CLAIMS Patent Services and Google (https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data), Creative Commons Attribution 4.0 International License (CC BY 4.0), https://console.cloud.google.com/marketplace/details/google_patents_public_datasets/google-patents-public-data - USPTO patent data (https://bulkdata.uspto.gov/), see: https://bulkdata.uspto.gov/data/2020TermsConditions.docx
https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld UniversityAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Publications at Bielefeld UniversityDataset . 2020License: CC BYData sources: Publications at Bielefeld UniversityAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4119/unibi/2941555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Mendeley Authors: Paula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); +6 AuthorsPaula Castesana (11024216); Melisa Diaz Resquin (11024219); Sabine Darras (11024222); Darío Gómez (11024225); Claire Granier (11024228); Nicolás Huneeus (11024231); Mauricio Osses Alvarado (11024234); Enrique Puliafito (11024237); Néstor Rojas (11024240); Laura Dawidowski (5765333);PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3 and SO2) from anthropogenic sources in South America, for the period 2014–2016. The dataset was developed on the basis of the existing data on the global dataset CAMS-GLOB-ANT v4.1 (developed by joining CEDS trends and EDGARv4.3.2 historical data), enriching it with derived data from locally available emission inventories for Argentina, Chile and Colombia. The inventories are presented as NetCDF4 files, one for each species and year, gridded with a spatial resolution of 0.1° x 0.1° covering the domain 32° W–120° W and 34° N–58° S. Each file contains 12 variables corresponding to the emissions in Tg/y from the following categories, which are organized and denominated using the nomenclature given by CAMS: thermal power plants (ENE); residential and commercial combustion (RES); road transportation (TRO); non-road transportation (TNR); fugitive emissions (FEF); industries (including fuel consumption in manufacturing industries and construction, refineries, industrial processes and solvent and other products use) (IND); agricultural soils (AGS); agriculture livestock (AGL); inland navigation (SHP); international navigation (SHP-INT); waste (including solid waste, wastewater and incineration) (SWD); and the sum of all sectors (SUM).
Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Mendeley Data arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/btf2mz4fhf.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu