- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 9. Industry and infrastructure
- ZENODO
- Energy Research
- 7. Clean energy
- 9. Industry and infrastructure
- ZENODO
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | THINFACEEC| THINFACELidón Gil-Escrig; Henk J. Bolink; Michele Sessolo; Samrana Kazim; Ángela Sastre-Santos; Cristina Momblona; Shahzada Ahmad; Laura Caliò;Abstract Planar perovskite solar cells using organic charge selective contacts were fabricated. In a vacuum deposited perovskite-based solar cell, dopant and additive free triazatruxene as the hole transport layer was introduced for device fabrication. High open-circuit voltage of 1090 mV was obtained using methylammonium lead iodide (Eg=1.55 eV) as light harvesting material, thus representing a loss of only 460 mV which is in close vicinity of mature silicon technology (400 mV). The devices showed a very competitive photovoltaic performance, monochromatic incident photon-to-electron conversion efficiency of 80% and the power conversion efficiencies in excess of 15% were measured with a negligible degree of hysteresis.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 03 Mar 2022 Finland, IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, AKA | Development and in operan..., EC | SOFT-PHOTOCONVERSION +1 projectsIRC ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| SOFT-PHOTOCONVERSION ,SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Molina-Osorio, Andrés F.; Gamero-Quijano, Alonso; Peljo, Pekka; Scanlon, Micheál D.;Abstract Breakthrough alternative technologies are urgently required to alleviate the critical need to decarbonise our energy supply. We showcase non-conventional approaches to battery and solar energy conversion and storage (ECS) system designs that harness key attributes of immiscible electrolyte solutions, especially the membraneless separation of redox active species and ability to electrify certain liquid–liquid interfaces. We critically evaluate the recent development of membraneless redox flow batteries based on biphasic systems, where one redox couple is confined to an immiscible ionic liquid or organic solvent phase, and the other couple to an aqueous phase. Common to all solar ECS devices are the abilities to harvest light, leading to photo-induced charge carrier separation, and separate the products of the photo-reaction, minimising recombination. We summarise recent progress towards achieving this accepted solar ECS design using immiscible electrolyte solutions in photo-ionic cells, to generate redox fuels, and biphasic “batch” water splitting, to generate solar fuels.
Current Opinion in E... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2020.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Current Opinion in E... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2020.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Cordeiro, Juliana Barcelos; Mahani, Khashayar; Farbod Farzan; Jafari, Mohsen A.;{"references": ["U.S. Energy Information Administration. \"How much energy is\nconsumed in residential and commercial buildings in the United States?\"\nAvailable at: http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1", "S. Darby, \"The effectiveness of feedback on energy consumption.\"\nEnvironmental Change Institute, University of Oxford, 2006. Available\nat: http://www.globalwarmingisreal.com/energyconsump-feedback.pdf.\nVisited: September 2015", "J. S. John, \"Putting energy disaggregation tech to the test,\" November,\n2013. Greentech Media. Available at:\nhttp://www.greentechmedia.com/articles/read/putting-energydisaggregation-tech-to-the-test.\nVisited: September 2015", "A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, \"Non-intrusive load\nmonitoring approaches for disaggregated energy sensing: a survey,\"\nSensors, vol. 12, no. 12, pp. 16838-16866, December 2012.", "G. W. Hart, \"Nonintrusive appliance load monitoring,\" in Proc. of the\nIEEE, vol. 80, pp. 1870-1891, December 1992.", "M. Baranski, J. Voss, \"Non-intrusive appliance load monitoring based\non Optical Sensor,\" IEEE Bologna PowerTech Conference, Bologna,\nItaly, June 2003. Available at:\nhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1304732", "L. Farinaccio, R. Zmeureanu, \"Using a pattern recognition approach to\ndisaggregate the total electricity consumption in a house into the major\nen-uses,\" Elsevier, Energy and Buildings, vol. 30, no. 3, pp. 245-259,\nAugust 1999.", "J. M. Abreu, F. C. Pereira, P. Ferr\u00e3o, \"Using pattern recognition to\nidentify habitual behavior in residential electricity consumption,\"\nElsevier, Energy and Buildings, vol. 49, pp. 479-487, June 2012.", "C. Beckel, L. Sadamori, S. Santini, \"Automatic socio-economic\nclassification of households using electricity consumption data,\" in\nProc. of the 4th international conference on future energy systems, New\nYork, 2013, pp. 75-86.\n[10] H. Zhao, F. Magoul\u00e8s, \"A review on the prediction of building energy\nconsumption,\" Elsevier, Renewable and Sustainable Energy Reviews,\nvol. 16, no. 6, pp. 3586-3592, August 2012.\n[11] G. K. F. Tso, K. K. W. Yau, \"Predicting electricity energy consumption:\nA comparison of regression analysis, decision tree and neural networks,\"\nElsevier, Energy, vol. 32, no. 9, pp. 1761-1768, September 2007.\n[12] F. Farzan, S. A. Vaghefi, K. Mahani, M. A. Jafari, J. Gong, \"Operational\nplanning for multi-building portfolio in an uncertain energy market,\"\nElsevier, Energy and Buildings, vol. 103, pp. 271-283, September 2015."]} Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Informa UK Limited Funded by:EC | STRENTEXEC| STRENTEXAuthors: Ali, Adnan E.; Jeoti, Varun; Stojanović, Goran M.;Wearable power supply devices and systems are important necessities for the emerging textile electronic applications. Current energy supply devices usually need more space than the device they power, and are often based on rigid and bulky materials, making them difficult to wear. Fabric-based batteries without any rigid electrical components are therefore ideal candidates to solve the problem of powering these devices. Printing technologies have greater potential in manufacturing lightweight and low-cost batteries with high areal capacity and generating high voltages which are crucial for electronic textile (e-textile) applications. In this review, we present various printing techniques, and battery chemistries applied for smart fabrics, and give a comparison between them in terms of their potential to power the next generation of electronic textiles. Series combinations of many of these printed and distributed battery cells, using electrically conducting threads, have demonstrated their ability to power different electronic devices with a specific voltage and current requirements. Therefore, the present review summarizes the chemistries and material components of several flexible and textile-based batteries, and provides an outlook for the future development of fabric-based printed batteries for wearable and electronic textile applications with enhanced level of DC voltage and current for long periods of time.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaSmithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2021.1962203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaSmithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2021.1962203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Donno D.; Hassani S.; Sofoini T.; Mellano M. G.; Riondato I.; Gamba G.; Beccaro G. L.;doi: 10.3390/su13115815
handle: 2318/1795363
Although modern medicine is available in many developing countries, such as the Comoros Islands, the primary health-care needs of the local population are based on traditional foods and beverages derived from natural resources and medicinal plants for cultural and historical reasons. Aphloia theiformis (Vahl) Benn. (‘Mfandrabo’), Cinnamomum verum J.Presl (‘Mani yamdrara’), Ocimum gratissimum L. (‘Roulé’), Plectranthus amboinicus (Lour.) Spreng. (‘Ynadombwe’), Cymbopogon nardus (L.) Rendle (‘Sandze monach’) and Ocimum americanum L. (‘Kandza’) are six wild plants that are largely utilised to treat many diseases. The leaves of these plants are used in the traditional Comorian tea (aqueous infusion). This study aimed to identify and quantify the main health-promoting compounds in the traditional formulation of Comorian tea by HPLC profiling together with a preliminary assessment of antioxidant capacity to confirm the traditional use of these plants by the local population. The single plants were also studied. The Comoros tea presented a total polyphenolic content (TPC) of 4511.50 ± 74.41 mgGAE/100 g DW, a value higher than the TPCs of the different plants included in the Comorian tea. Moreover, the Comorian tea showed an antioxidant capacity (AOC) of 578.65 ± 6.48 mmol Fe2+/Kg DW, a value higher if compared to all the AOC values obtained in the single plants. The polyphenolic fraction (771.37 ± 35.76 mg/100 g DW) and organic acids (981.40 ± 38.38 mg/100 g DW) were the most important phytochemical classes in the Comorian tea (40.68% and 51.75% of the total phytocomplex, respectively), followed by the monoterpenes (5.88%) and vitamin C (1.67%), while carotenoids were detected in trace (0.02%). The Comorian tea could be important in meeting the high demand in the Comoros Islands and other developing countries for cost-effective and natural health-promoting foods and/or beverages to be produced by agri-food industries and used by the local population. This study may promote traditional foods in rural communities in the Comoros Islands and contribute to sustainable rural development and a commercial valorisation of these plants for health-promoting and food applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/11/5815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/11/5815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Project deliverable 2007Publisher:Zenodo Authors: Kontoleontos, E.; Mendrinos, Dimitrios; Karytsas, C.;This study has been carried out for the LOW-BIN (Efficient Low Temperature Geothermal Binary Power) project, which is supported by the European Commission FP6 program. Its aim is to study and recommend optimal Rankine cycles using Isobutane (R600a) and R134a as working fluids for two geothermal binary power machines. The first one (ORC machine A) should be able to generate electricity from low temperature geothermal resources, with profitable operation down to 65°C. The second one (ORC machine B) should be able to cogenerate both heat and power by heat recovery from the cooling water circuit, corresponding to geothermal fluids of 120-150ºC and cooling water supplying a district heating system at 60/80ºC. The main Rankine Cycle parameters and components are modelled, such as the shell and tube condenser and the geothermal plate heat exchanger. The objectives of the optimization are maximizing overall conversion efficiency and minimizing the cost of the plant, which is represented as minimizing of the exchangers’ surface. Through this study, a set of optimal solutions for ORC machines A and B are obtained, that combine maximum plant’s efficiency (6.7-7.4 %) and minimum cost. Each optimal solution corresponds to an optimal Rankine Cycle and every parameter of the cycle is defined. {"references": ["Ayub Z.H., Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for the refrigerant evaporators, Heat Transfer Engineering 24 (5) (2003) 3-16.", "Giannakoglou, K.C., Design of Optimal Aerodynamic Shapes using Stochastic Optimization Methods and Computational Intelligence, Progress in Aerospace Sciences, 38, pp. 43-76, 2002.", "Karakasis, M., Giotis, A.P., Giannakoglou, K.C., Efficient Genetic Optimization Using Inexact Information and Sensitivity Analysis. Application in Shape Optimization Problems, ECCOMAS CFD Conference 2001, Swansea, Wales, 2001.", "Mendrinos D., Kontoleontos E., Karytsas C., Geothermal Binary Plants: Water or Air Cooled?. Presented during the ENGINE workshop 5 on Electricity Generation from Enhanced Geothermal Systems, Strasbourg, France, 14-16 September 2006.", "Brasz J., Biedermann B., Holdmann G., Power Production from a Moderate Temperature Geothermal Resource, GRC annual meeting, Reno, NV, USA, September 25-28, 2005."]} ENGINE - FP6
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1257379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1257379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:American Chemical Society (ACS) Funded by:NWO | New concepts in catalytic..., EC | CatASusNWO| New concepts in catalytic lignin depolymerization: sustainable pathways towards value added chemicals ,EC| CatASusAuthors: Fridrich, Bálint; Stuart, Marc C. A.; Barta, Katalin;pmid: 30271689
pmc: PMC6156109
Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel catalytic chain elongation methods involving C-C bond formation are desired. Herein we report on a simple, non-noble-metal-based method for the highly selective coupling of 1-butanol and acetone into high molecular weight (C7-C11) ketones, as well as ABE mixtures into (C5-C11) ketones using the solid base Mg-Al-PMO in combination with small amount of Raney nickel. Upon hydrodeoxygenation, these ketones are converted to fuel range alkanes with excellent carbon utilization (up to 89%) using Earth abundant metal containing catalysis.
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)ACS Sustainable Chemistry & EngineeringArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalACS Sustainable Chemistry & EngineeringArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b00733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)ACS Sustainable Chemistry & EngineeringArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalACS Sustainable Chemistry & EngineeringArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b00733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2019 SpainPublisher:Elsevier BV María Isabel Roldán; Carlos Pérez-Rábago; Alessandro Gallo; Alessandro Gallo; Elisa Alonso; Edward Fuentealba;Rotary kilns are worldwide used for industrial processes that involve thermal treatments of particulate materials. However, a great amount of fossil fuels is employed in such processes. As alternative, solar rotary kilns are considered for this application due to their versatility and potential to substitute traditional fossil-fuel driven devices. In order to boost the development of this technology, efforts have to be focused on the control of the particle temperature during the treatment. In this context, a lab-scale rotary kiln was built and tested using a 7- kWe high-flux solar simulator at University of Antofagasta. It was conceived to treat particulate materials of different nature and it is able to reach temperatures higher than 800 °C under different operation strategies. Silicon carbide was selected for initial tests because it is inert, endures high temperatures (up to 1600 °C) and it has been proposed as thermal storage vector in several researches on concentrated solar power. In a first stage, the empty kiln was preheated up to about 800 °C, reaching a steady state in less than three hours and with a power of approximately 370 W entering the kiln cavity. Afterwards, 43 g of silicon carbide were introduced in the furnace and the system was heated again up to a second steady state above 800 °C. In this stage, particles showed a fast increment of their temperature and exceeded 700 °C in less than three minutes after loading. A one-dimensional transient numerical model was also developed to perform the thermal analysis of the kiln and the estimation of both the particle temperature and the system efficiency. Numerical results showed good agreement with experimental data and thermal losses could be quantified in detail. Therefore, the model was also used to predict the thermal behavior of a solar rotary kiln working in batch mode. The authors acknowledge the financial support provided by the FONDECYT project number 3150026 of CONICYT (Chile), the Education Ministry of Chile Grant PMI ANT 1201, as well as CONICYT/ FONDAP/15110019 “Solar Energy Research Center” SERC-Chile. The authors also gratefully acknowledge the financial support received from the Sectorial Fund CONACYT-SENER-Energy Sustainability, through grant 207450, Mexican Center for Innovation in Solar Energy (CeMIE-Sol), whithin strategic project P-10 “Solar Fuels and Industrial Processes” (COSOLpi). Special thanks go to the students Lou Cardinale, Rodrigo Méndez, and Daniel Vidal who gave a precious contribution during the experimental trials at LaCoSA of University of Antofagasta.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2019License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 85 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2019License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article , Journal 2015Publisher:Zenodo Authors: Zmarrak Wali Khan; Muhammad Waqas;doi: 10.5281/zenodo.49363
{"references": ["[1] W. EL-Khattam, and M. M. A. Salama, \u201cImpact of Distributed Generation on Voltage Profile in Deregulated Distribution System,\u201d Proceedings of the Power Systems 2002 Conference, Impact of Distributed Generation, Clemson, SC, USA, pp. 13-14, March 2002", "[2] P. Barker, and R. W. De Mello, \" Detennining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems,\" IEEE Trans. Power Delivery, vol. 15, no. 4, pp. 22-28, April 1999K. Elissa, \u201cTitle of paper if known,\u201d unpublished.", "[3] D.Q. Hung, N. Mithulananthan, and R.c. Bansal, \"Analytical expression for DG allocation in primary distribution network,\" IEEE Trans. on energy conservation, vol.2 5, pp 814-820, Sept 2010.", "[4] E. Bamdad, \u201cHigh Penetration Photovoltaic System Analysis\u201d, MSc. dissertation, Department of Electrical Engineering, California State University, Northridge, 2014, Pg 37-38.", "[5] C.A.Canizaresand and F.L.Alvarado,\u201cPoint of collapse and continuation methods for large AC/DC systems,\u201d IEEE Trans. Power Syst., vol. 8, no. 1, pp. 1\u20138, Feb. 1993.", "[6] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, \u201cSummary of distributed resources impact on power delivery systems,\u201d IEEE Trans.Power Del.,vol.23,no.3,pp.1636\u20131644,Jul.2008.", "[7] M. Wolter and L. Hofmann, \u201dGeneral estimation of the impact of additional DG sources on distribution grids\u201d, accepted for presentation at IEEE PES General Meeting 2011, Detroit, United States 2011.", "[8] I. Lei\u00dfe, \u201cEfficient Integration of Distributed Generation in Electricity Distribution Networks\u201d, PhD. dissertation, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, 2013, Pg 174."]} Distributed Generation is gaining popularity with the recent advancements in the renewable energy sources. DGs are used as a source of energy as well as performance enhancers by utilities. Subject to the weather of a certain location different DG sources are used in which Wind Turbines, Small Hydro Plants, Photovoltaic and Fuel Cells are commonly used. In this research work, a detailed comparative analysis is made among Wind Turbine, Photovoltaic and Synchronous machine to suggest the most suitable source. The said comparison is made on the technical factors such as voltage and electrical power losses and on the basis of this comparison a suitable DG source is suggested. A radial distribution feeder is simulated in Electrical Transient Analyzer Program (ETAP) to study the effect of these sources on the test distribution network
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.49363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.49363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:Elsevier BV Funded by:EC | THINFACEEC| THINFACELidón Gil-Escrig; Henk J. Bolink; Michele Sessolo; Samrana Kazim; Ángela Sastre-Santos; Cristina Momblona; Shahzada Ahmad; Laura Caliò;Abstract Planar perovskite solar cells using organic charge selective contacts were fabricated. In a vacuum deposited perovskite-based solar cell, dopant and additive free triazatruxene as the hole transport layer was introduced for device fabrication. High open-circuit voltage of 1090 mV was obtained using methylammonium lead iodide (Eg=1.55 eV) as light harvesting material, thus representing a loss of only 460 mV which is in close vicinity of mature silicon technology (400 mV). The devices showed a very competitive photovoltaic performance, monochromatic incident photon-to-electron conversion efficiency of 80% and the power conversion efficiencies in excess of 15% were measured with a negligible degree of hysteresis.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 03 Mar 2022 Finland, IrelandPublisher:Elsevier BV Publicly fundedFunded by:IRC, AKA | Development and in operan..., EC | SOFT-PHOTOCONVERSION +1 projectsIRC ,AKA| Development and in operando characterization of solid redox boosters for high energy density redox flow batteries (redoxSolid Flow) ,EC| SOFT-PHOTOCONVERSION ,SFI| Designing Reactive Functionalised Soft Interfaces – Self-healing soft materials for solar energy conversion, energy storage, and sustainable low cost hydrogen productionAuthors: Molina-Osorio, Andrés F.; Gamero-Quijano, Alonso; Peljo, Pekka; Scanlon, Micheál D.;Abstract Breakthrough alternative technologies are urgently required to alleviate the critical need to decarbonise our energy supply. We showcase non-conventional approaches to battery and solar energy conversion and storage (ECS) system designs that harness key attributes of immiscible electrolyte solutions, especially the membraneless separation of redox active species and ability to electrify certain liquid–liquid interfaces. We critically evaluate the recent development of membraneless redox flow batteries based on biphasic systems, where one redox couple is confined to an immiscible ionic liquid or organic solvent phase, and the other couple to an aqueous phase. Common to all solar ECS devices are the abilities to harvest light, leading to photo-induced charge carrier separation, and separate the products of the photo-reaction, minimising recombination. We summarise recent progress towards achieving this accepted solar ECS design using immiscible electrolyte solutions in photo-ionic cells, to generate redox fuels, and biphasic “batch” water splitting, to generate solar fuels.
Current Opinion in E... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2020.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Current Opinion in E... arrow_drop_down University of Limerick Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Limerick Institutional RepositoryAaltodoc Publication ArchiveArticle . 2020 . Peer-reviewedData sources: Aaltodoc Publication ArchiveCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCurrent Opinion in ElectrochemistryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coelec.2020.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Zenodo Authors: Cordeiro, Juliana Barcelos; Mahani, Khashayar; Farbod Farzan; Jafari, Mohsen A.;{"references": ["U.S. Energy Information Administration. \"How much energy is\nconsumed in residential and commercial buildings in the United States?\"\nAvailable at: http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1", "S. Darby, \"The effectiveness of feedback on energy consumption.\"\nEnvironmental Change Institute, University of Oxford, 2006. Available\nat: http://www.globalwarmingisreal.com/energyconsump-feedback.pdf.\nVisited: September 2015", "J. S. John, \"Putting energy disaggregation tech to the test,\" November,\n2013. Greentech Media. Available at:\nhttp://www.greentechmedia.com/articles/read/putting-energydisaggregation-tech-to-the-test.\nVisited: September 2015", "A. Zoha, A. Gluhak, M. A. Imran, S. Rajasegarar, \"Non-intrusive load\nmonitoring approaches for disaggregated energy sensing: a survey,\"\nSensors, vol. 12, no. 12, pp. 16838-16866, December 2012.", "G. W. Hart, \"Nonintrusive appliance load monitoring,\" in Proc. of the\nIEEE, vol. 80, pp. 1870-1891, December 1992.", "M. Baranski, J. Voss, \"Non-intrusive appliance load monitoring based\non Optical Sensor,\" IEEE Bologna PowerTech Conference, Bologna,\nItaly, June 2003. Available at:\nhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1304732", "L. Farinaccio, R. Zmeureanu, \"Using a pattern recognition approach to\ndisaggregate the total electricity consumption in a house into the major\nen-uses,\" Elsevier, Energy and Buildings, vol. 30, no. 3, pp. 245-259,\nAugust 1999.", "J. M. Abreu, F. C. Pereira, P. Ferr\u00e3o, \"Using pattern recognition to\nidentify habitual behavior in residential electricity consumption,\"\nElsevier, Energy and Buildings, vol. 49, pp. 479-487, June 2012.", "C. Beckel, L. Sadamori, S. Santini, \"Automatic socio-economic\nclassification of households using electricity consumption data,\" in\nProc. of the 4th international conference on future energy systems, New\nYork, 2013, pp. 75-86.\n[10] H. Zhao, F. Magoul\u00e8s, \"A review on the prediction of building energy\nconsumption,\" Elsevier, Renewable and Sustainable Energy Reviews,\nvol. 16, no. 6, pp. 3586-3592, August 2012.\n[11] G. K. F. Tso, K. K. W. Yau, \"Predicting electricity energy consumption:\nA comparison of regression analysis, decision tree and neural networks,\"\nElsevier, Energy, vol. 32, no. 9, pp. 1761-1768, September 2007.\n[12] F. Farzan, S. A. Vaghefi, K. Mahani, M. A. Jafari, J. Gong, \"Operational\nplanning for multi-building portfolio in an uncertain energy market,\"\nElsevier, Energy and Buildings, vol. 103, pp. 271-283, September 2015."]} Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1124581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020Embargo end date: 04 May 2021 Croatia, South Africa, CroatiaPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITYEC| HYDRIDE4MOBILITYLototskyy, Mykhaylo; Tolj, Ivan; Klochko, Yevgeniy; Davids, Moegamat Wafeeq; Swanepoel, Dana; Linkov, Vladimir;The use of fuel cells (FC) in heavy duty utility vehicles, including material handling units / forklifts or underground mining vehicles, has a number of advantages over similar battery-driven vehicles including: constant power during the entire shift, and shorter refuelling time as compared to the time to recharge the battery. Most of vehicular FC power systems demonstrated so far have utilised compressed H2 stored in gas cylinders at pressures up to 350 bar. This solution, however, results in too light weight of the FC power modules for the utility vehicles which require additional ballast for a proper counterbalancing to provide vehicle stability. In the underground applications, the use of pressurised hydrogen (> 20 bar) is not acceptable at all for the safety reasons. A promising alternative is the application of metal hydrides (MH) for the on-board hydrogen storage [1]. The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles [2]. Here, we present new engineering solutions [3, 4] of a MH hydrogen storage tank for FC utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge / discharge. The tank is an assembly of several MH cassettes. Each cassette comprises several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. H2 input / output pipelines are ended by gas filters inside the MH containers and connected to a common gas manifold from the opposite side. The assembly of the MH containers staggered together with heating / cooling tubes is encased in molten lead followed by the solidification of the latter. During lead encasing, the inner space of the MH containers is evacuated providing initial activation of the MH material. After cooling down, the MH cassette is filled with pressurised H2 for the initial H2 charge which starts immediately and completes in about 1.5 hours. One MH cassette comprising of five 51.3x800 mm MH containers (each filled with ~3 kg of the MH material) has hydrogen storage capacity about 2.5 Nm3 H2. When heated with a running water to T=40– 50 °C (typical coolant temperature during the operation of a PEMFC stack), the cassette can release more than 60% of this maximum amount at the H2 flow rate of 25 NL/min that corresponds to 1 hour long full load operation of 2.5 kWe stack at 50% efficiency. Furthermore, at the heating temperature about 40 °C and H2 output flow rate of 15 NL/min (equivalent to the stack power of 1.38 kWe at the same efficiency) the H2 release remains stable during >2 hours providing utilisation of ~80% of the stored H2. {"references": ["M.V. Lototskyy, et al, . Progr. Natur. Sci., 27 (2017) 3-20", "M.V. Lototskyy, et al, . J. Power Sources, 316 (2016) 239-250", "M.V.Lototskyy, et. al, Patent application WO 2015/189758 A1", "M.V.Lototskyy, et. al, Patent application UK 1806840.3 (2018)"]}
Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 207visibility views 207 download downloads 35 Powered bymore_vert Croatian Research In... arrow_drop_down Croatian Research Information SystemConference object . 2018Full-Text: https://www.vin.bg.ac.rs/mesc2018/wp-content/uploads/2018/09/Book_of_Abstracts_mESC2018_w_covers.pdfData sources: Croatian Research Information SystemCroatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBICroatian Scientific Bibliography - CROSBIConference object . 2018Data sources: Croatian Scientific Bibliography - CROSBIInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Croatian Research Information SystemInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Informa UK Limited Funded by:EC | STRENTEXEC| STRENTEXAuthors: Ali, Adnan E.; Jeoti, Varun; Stojanović, Goran M.;Wearable power supply devices and systems are important necessities for the emerging textile electronic applications. Current energy supply devices usually need more space than the device they power, and are often based on rigid and bulky materials, making them difficult to wear. Fabric-based batteries without any rigid electrical components are therefore ideal candidates to solve the problem of powering these devices. Printing technologies have greater potential in manufacturing lightweight and low-cost batteries with high areal capacity and generating high voltages which are crucial for electronic textile (e-textile) applications. In this review, we present various printing techniques, and battery chemistries applied for smart fabrics, and give a comparison between them in terms of their potential to power the next generation of electronic textiles. Series combinations of many of these printed and distributed battery cells, using electrically conducting threads, have demonstrated their ability to power different electronic devices with a specific voltage and current requirements. Therefore, the present review summarizes the chemistries and material components of several flexible and textile-based batteries, and provides an outlook for the future development of fabric-based printed batteries for wearable and electronic textile applications with enhanced level of DC voltage and current for long periods of time.
Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaSmithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2021.1962203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science and Technolo... arrow_drop_down Science and Technology of Advanced MaterialsArticle . Peer-reviewedLicense: CC BYData sources: SygmaSmithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Science and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Technology of Advanced MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14686996.2021.1962203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Donno D.; Hassani S.; Sofoini T.; Mellano M. G.; Riondato I.; Gamba G.; Beccaro G. L.;doi: 10.3390/su13115815
handle: 2318/1795363
Although modern medicine is available in many developing countries, such as the Comoros Islands, the primary health-care needs of the local population are based on traditional foods and beverages derived from natural resources and medicinal plants for cultural and historical reasons. Aphloia theiformis (Vahl) Benn. (‘Mfandrabo’), Cinnamomum verum J.Presl (‘Mani yamdrara’), Ocimum gratissimum L. (‘Roulé’), Plectranthus amboinicus (Lour.) Spreng. (‘Ynadombwe’), Cymbopogon nardus (L.) Rendle (‘Sandze monach’) and Ocimum americanum L. (‘Kandza’) are six wild plants that are largely utilised to treat many diseases. The leaves of these plants are used in the traditional Comorian tea (aqueous infusion). This study aimed to identify and quantify the main health-promoting compounds in the traditional formulation of Comorian tea by HPLC profiling together with a preliminary assessment of antioxidant capacity to confirm the traditional use of these plants by the local population. The single plants were also studied. The Comoros tea presented a total polyphenolic content (TPC) of 4511.50 ± 74.41 mgGAE/100 g DW, a value higher than the TPCs of the different plants included in the Comorian tea. Moreover, the Comorian tea showed an antioxidant capacity (AOC) of 578.65 ± 6.48 mmol Fe2+/Kg DW, a value higher if compared to all the AOC values obtained in the single plants. The polyphenolic fraction (771.37 ± 35.76 mg/100 g DW) and organic acids (981.40 ± 38.38 mg/100 g DW) were the most important phytochemical classes in the Comorian tea (40.68% and 51.75% of the total phytocomplex, respectively), followed by the monoterpenes (5.88%) and vitamin C (1.67%), while carotenoids were detected in trace (0.02%). The Comorian tea could be important in meeting the high demand in the Comoros Islands and other developing countries for cost-effective and natural health-promoting foods and/or beverages to be produced by agri-food industries and used by the local population. This study may promote traditional foods in rural communities in the Comoros Islands and contribute to sustainable rural development and a commercial valorisation of these plants for health-promoting and food applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/11/5815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/11/5815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13115815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Project deliverable 2007Publisher:Zenodo Authors: Kontoleontos, E.; Mendrinos, Dimitrios; Karytsas, C.;This study has been carried out for the LOW-BIN (Efficient Low Temperature Geothermal Binary Power) project, which is supported by the European Commission FP6 program. Its aim is to study and recommend optimal Rankine cycles using Isobutane (R600a) and R134a as working fluids for two geothermal binary power machines. The first one (ORC machine A) should be able to generate electricity from low temperature geothermal resources, with profitable operation down to 65°C. The second one (ORC machine B) should be able to cogenerate both heat and power by heat recovery from the cooling water circuit, corresponding to geothermal fluids of 120-150ºC and cooling water supplying a district heating system at 60/80ºC. The main Rankine Cycle parameters and components are modelled, such as the shell and tube condenser and the geothermal plate heat exchanger. The objectives of the optimization are maximizing overall conversion efficiency and minimizing the cost of the plant, which is represented as minimizing of the exchangers’ surface. Through this study, a set of optimal solutions for ORC machines A and B are obtained, that combine maximum plant’s efficiency (6.7-7.4 %) and minimum cost. Each optimal solution corresponds to an optimal Rankine Cycle and every parameter of the cycle is defined. {"references": ["Ayub Z.H., Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for the refrigerant evaporators, Heat Transfer Engineering 24 (5) (2003) 3-16.", "Giannakoglou, K.C., Design of Optimal Aerodynamic Shapes using Stochastic Optimization Methods and Computational Intelligence, Progress in Aerospace Sciences, 38, pp. 43-76, 2002.", "Karakasis, M., Giotis, A.P., Giannakoglou, K.C., Efficient Genetic Optimization Using Inexact Information and Sensitivity Analysis. Application in Shape Optimization Problems, ECCOMAS CFD Conference 2001, Swansea, Wales, 2001.", "Mendrinos D., Kontoleontos E., Karytsas C., Geothermal Binary Plants: Water or Air Cooled?. Presented during the ENGINE workshop 5 on Electricity Generation from Enhanced Geothermal Systems, Strasbourg, France, 14-16 September 2006.", "Brasz J., Biedermann B., Holdmann G., Power Production from a Moderate Temperature Geothermal Resource, GRC annual meeting, Reno, NV, USA, September 25-28, 2005."]} ENGINE - FP6
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1257379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1257379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:American Chemical Society (ACS) Funded by:NWO | New concepts in catalytic..., EC | CatASusNWO| New concepts in catalytic lignin depolymerization: sustainable pathways towards value added chemicals ,EC| CatASusAuthors: Fridrich, Bálint; Stuart, Marc C. A.; Barta, Katalin;pmid: 30271689
pmc: PMC6156109
Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel catalytic chain elongation methods involving C-C bond formation are desired. Herein we report on a simple, non-noble-metal-based method for the highly selective coupling of 1-butanol and acetone into high molecular weight (C7-C11) ketones, as well as ABE mixtures into (C5-C11) ketones using the solid base Mg-Al-PMO in combination with small amount of Raney nickel. Upon hydrodeoxygenation, these ketones are converted to fuel range alkanes with excellent carbon utilization (up to 89%) using Earth abundant metal containing catalysis.
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)ACS Sustainable Chemistry & EngineeringArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalACS Sustainable Chemistry & EngineeringArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b00733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2018Data sources: DANS (Data Archiving and Networked Services)ACS Sustainable Chemistry & EngineeringArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalACS Sustainable Chemistry & EngineeringArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b00733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2019 SpainPublisher:Elsevier BV María Isabel Roldán; Carlos Pérez-Rábago; Alessandro Gallo; Alessandro Gallo; Elisa Alonso; Edward Fuentealba;Rotary kilns are worldwide used for industrial processes that involve thermal treatments of particulate materials. However, a great amount of fossil fuels is employed in such processes. As alternative, solar rotary kilns are considered for this application due to their versatility and potential to substitute traditional fossil-fuel driven devices. In order to boost the development of this technology, efforts have to be focused on the control of the particle temperature during the treatment. In this context, a lab-scale rotary kiln was built and tested using a 7- kWe high-flux solar simulator at University of Antofagasta. It was conceived to treat particulate materials of different nature and it is able to reach temperatures higher than 800 °C under different operation strategies. Silicon carbide was selected for initial tests because it is inert, endures high temperatures (up to 1600 °C) and it has been proposed as thermal storage vector in several researches on concentrated solar power. In a first stage, the empty kiln was preheated up to about 800 °C, reaching a steady state in less than three hours and with a power of approximately 370 W entering the kiln cavity. Afterwards, 43 g of silicon carbide were introduced in the furnace and the system was heated again up to a second steady state above 800 °C. In this stage, particles showed a fast increment of their temperature and exceeded 700 °C in less than three minutes after loading. A one-dimensional transient numerical model was also developed to perform the thermal analysis of the kiln and the estimation of both the particle temperature and the system efficiency. Numerical results showed good agreement with experimental data and thermal losses could be quantified in detail. Therefore, the model was also used to predict the thermal behavior of a solar rotary kiln working in batch mode. The authors acknowledge the financial support provided by the FONDECYT project number 3150026 of CONICYT (Chile), the Education Ministry of Chile Grant PMI ANT 1201, as well as CONICYT/ FONDAP/15110019 “Solar Energy Research Center” SERC-Chile. The authors also gratefully acknowledge the financial support received from the Sectorial Fund CONACYT-SENER-Energy Sustainability, through grant 207450, Mexican Center for Innovation in Solar Energy (CeMIE-Sol), whithin strategic project P-10 “Solar Fuels and Industrial Processes” (COSOLpi). Special thanks go to the students Lou Cardinale, Rodrigo Méndez, and Daniel Vidal who gave a precious contribution during the experimental trials at LaCoSA of University of Antofagasta.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2019License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 85 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2019License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article , Journal 2015Publisher:Zenodo Authors: Zmarrak Wali Khan; Muhammad Waqas;doi: 10.5281/zenodo.49363
{"references": ["[1] W. EL-Khattam, and M. M. A. Salama, \u201cImpact of Distributed Generation on Voltage Profile in Deregulated Distribution System,\u201d Proceedings of the Power Systems 2002 Conference, Impact of Distributed Generation, Clemson, SC, USA, pp. 13-14, March 2002", "[2] P. Barker, and R. W. De Mello, \" Detennining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems,\" IEEE Trans. Power Delivery, vol. 15, no. 4, pp. 22-28, April 1999K. Elissa, \u201cTitle of paper if known,\u201d unpublished.", "[3] D.Q. Hung, N. Mithulananthan, and R.c. Bansal, \"Analytical expression for DG allocation in primary distribution network,\" IEEE Trans. on energy conservation, vol.2 5, pp 814-820, Sept 2010.", "[4] E. Bamdad, \u201cHigh Penetration Photovoltaic System Analysis\u201d, MSc. dissertation, Department of Electrical Engineering, California State University, Northridge, 2014, Pg 37-38.", "[5] C.A.Canizaresand and F.L.Alvarado,\u201cPoint of collapse and continuation methods for large AC/DC systems,\u201d IEEE Trans. Power Syst., vol. 8, no. 1, pp. 1\u20138, Feb. 1993.", "[6] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, \u201cSummary of distributed resources impact on power delivery systems,\u201d IEEE Trans.Power Del.,vol.23,no.3,pp.1636\u20131644,Jul.2008.", "[7] M. Wolter and L. Hofmann, \u201dGeneral estimation of the impact of additional DG sources on distribution grids\u201d, accepted for presentation at IEEE PES General Meeting 2011, Detroit, United States 2011.", "[8] I. Lei\u00dfe, \u201cEfficient Integration of Distributed Generation in Electricity Distribution Networks\u201d, PhD. dissertation, Department of Measurement Technology and Industrial Electrical Engineering, Lund University, 2013, Pg 174."]} Distributed Generation is gaining popularity with the recent advancements in the renewable energy sources. DGs are used as a source of energy as well as performance enhancers by utilities. Subject to the weather of a certain location different DG sources are used in which Wind Turbines, Small Hydro Plants, Photovoltaic and Fuel Cells are commonly used. In this research work, a detailed comparative analysis is made among Wind Turbine, Photovoltaic and Synchronous machine to suggest the most suitable source. The said comparison is made on the technical factors such as voltage and electrical power losses and on the basis of this comparison a suitable DG source is suggested. A radial distribution feeder is simulated in Electrical Transient Analyzer Program (ETAP) to study the effect of these sources on the test distribution network
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.49363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.49363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu