- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 2. Zero hunger
- English
- Energy Research
- 11. Sustainability
- 12. Responsible consumption
- 2. Zero hunger
- English
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Council for Scientific and Industrial Research Authors: Francois Engelbrecht;The analyses of future climate change over South Africa as described in the Third National Communication, are from the projections of the Coupled Global Climate Models (CGCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Assessment Report (AR) 5 of the Intergovernmental Panel on Climate Change (IPCC). These projections are used to inform on the uncertainty range of the large-scale climate change futures over the southern African region. At the Council for Scientific Industrial Research (CSIR), a dynamic regional climate model CCAM (conformal-cubic atmospheric model) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) was used to downscale CMIP5 CGCM projections to 50 km resolution over Africa. These downscalings were for both Representative Concentration Pathway (RCP) 8.5 and Representative Concentration Pathway (RCP) 4.5 of AR5 of the IPCC. RCP 4.5 describes a future with relatively ambitious emission reductions whereas RCP 8.5 describes a future with no reductions in emissions. Emissions in RCP 4.5 peak around 2040, then decline and in RCP 8.5 emissions continue to rise throughout the 21st century. The change in temperature is expressed as an anomaly, the difference between the average climate over a period of the last several decades (1971-2000), and the projected climate (short to medium term 2021 to 2050). The simulations were performed on supercomputers of the CSIRO and on the Centre for High Performance Computing (CHPC) of the Meraka Institute of the CSIR in South Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:South African Environmental Observation Network Authors: Wim Hugo;Data was derived from the following sources: * Extent of underutilised and subsistence farmland, data obtained from Department of Agriculture, Forestry, and Fisheries. * On such land, groundnut potential was calculated from data published by Schulze and Maharaj (2007) on groundnut-growing potential. * Grain, Oil, Oilcake, and Residue production was calculated based on seed yields, and aggregated to meso-zones for planning and feasibility analysis. * Grain, Oil and Residue ratios were derived from literature
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2009Publisher:Inter-university Consortium for Political and Social Research (ICPSR) Authors: Papacostas, Antonis;This round of Eurobarometer surveys queried respondents on standard Eurobarometer measures, such as how satisfied they were with their present life, whether they attempted to persuade others close to them to share their views on subjects they held strong opinions about, whether they discussed political matters, what their country's goals should be in the next 10 to 15 years, and how they viewed the need for societal change. Additional questions focused on the respondents' knowledge of and opinions on globalization and on the European Union (EU), including how well-informed they were about the EU, what sources of information about the EU they used, whether their country had benefited from being an EU member (or would benefit from being a future member), and the extent of their personal interest in EU matters. Other questions queried respondents about their country's public administration, the transparency of both their own government institutions and those of the EU, and how important they thought transparency was in their functioning. Respondents were asked which countries, specifically Turkey, Croatia, and the Former Yugoslav Republic of Macedonia, they would favor joining the EU. National and European identity is a major focus of the survey. Questions focused on to what extent respondents felt they were a citizen of their region, of their country, of Europe, and of the world, whether they were content with their identity, and their feelings on the importance of being European. The second major focus of the survey was European elections. Respondents were queried about their interest in the elections, whether or not they would vote, the main criteria in making these decisions, and what themes the electoral campaign should focus on. In addition, respondents were asked to name the party they voted for in the European Parliament (EP) elections in June 2004, May 2007, November 2007, and the latest parliamentary elections in their respective countries. For the third major focus, European values and value priorities, respondents were asked to identify their personal values, whether they thought EU member states shared common values, and how close or distant these shared values were. In addition, respondents were asked to select the most important values they associated with the idea of happiness. For the final major focus of the survey, climate change, respondents were queried about their knowledge of and views on climate change, including whether they thought climate change was a serious problem, whether enough is being done to fight it, and the reasons why individuals may or may not take action in fighting climate change. Respondents were also asked to identify the personal actions they have taken regarding climate change and to evaluate the objectives proposed by the EU to limit the impact of climate change. Demographic and other background information includes age, gender, nationality, origin of birth (personal and parental), marital status, left-right political self-placement, strength of party attachment, occupation, age when stopped full-time education, household composition, ownership of a fixed or a mobile telephone and other durable goods, type and size of locality, region of residence, and language of interview (in select countries). face-to-face interview The original data collection was carried out by TNS Opinion and Social on request of the European Commission Between March 25th 2008 and May 4, 2008. Data for this Eurobarometer study are being released in two parts. Part 1 includes original study materials supplied by GESIS: (1) SPSS portable file; (2) SPSS syntax file containing user-defined missing values; and (3) documentation files. These files are being released in a zipped package. A documentation file has been provided by ICPSR to describe the contents of this zipped package. Part 2 includes study materials supplied by ICPSR: (1) SPSS, SAS, and Stata setup files; (2) SPSS and Stata system files, and a SAS transport (CPORT) file; (3) ASCII column-delimited and tab-delimited data files; and (4) documentation files. The data in Part 1 and Part 2 are identical, except for the following: Variable V1 'ARCHIVE STUDY NUMBER - DISTRIBUTOR' in Part 2 has been recoded to the ICPSR study number. Documentation files have been provided both by GESIS and ICPSR; the ICPSR documentation files may contain additional information. Data on voting behavior in European (D53) and national parliamentary elections (D54), and on party attachment (D2) have now been provided by the data producer and are now available. The codebook and setup files for this collection contain characters with diacritical marks used in many European languages. A split ballot was used for one or more questions in this survey. The variable V892 defines the separate groups. The documentation and/or setup files may contain references to Norway, but Norway was not a participant in this wave of Eurobarometer surveys. This collection contains no data for Norway. The fieldwork dates in the data file for Malta and Croatia are not consistent with the fieldwork dates in the "Technical Specifications" section of the ICPSR codebook. No documentation was supplied by the data producer for responses to open specifications of "OTHER" items for questions QC4, QC6, QD7, QE1, QE6, QE7 and QE8. The basic sample design applied in all states is a multistage, random (probability) one. In each country, a number of sampling points were drawn with probability proportional to population size (for a total coverage of the country) and to population density. In order to do so, the sampling points were drawn systematically from each of the "administrative regional units", after stratification by individual unit and type of area. They thus represent the whole territory of the countries surveyed according to the EUROSTAT NUTS II (or equivalent) and according to the distribution of the resident population of the respective nationalities in terms of metropolitan, urban and rural areas. In each of the selected sampling points, a starting address was drawn, at random. Further addresses (every Nth address) were selected by standard "random route" procedures, from the initial address. In each household, the respondent was drawn, at random (following the "closest birthday rule"). All interviews were conducted face-to-face in people's homes and in the appropriate national language. As far as the data capture is concerned, CAPI (Computer Assisted Personal Interview) was used in those countries where this technique was available. Please refer to the GESIS documentation and Technical Specifications within the ICPSR Codebook for additional sampling information. For each country a comparison between the sample and the universe was carried out. The Universe description was derived from Eurostat population data or from national statistics offices. For all countries surveyed, a national weighting procedure, using marginal and intercellular weighting, was carried out based on this Universe description. In all countries, gender, age, region and size of locality were introduced in the iteration procedure. For international weighting (i.e. EU averages), TNS Opinion and Social applies the official population figures as provided by EUROSTAT or national statistic offices. Please refer to the GESIS Documentation and Technical Specifications within the ICPSR Codebook for additional weighting information. Citizens of the EU aged 15 and over residing in the 27 EU member countries: Austria, Belgium, Bulgaria, Republic of Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United Kingdom, and the national population of citizens and the population of citizens of all the EU member countries aged 15 and over residing in the three EU candidate countries: Croatia, Turkey, and the Former Yugoslav Republic of Macedonia, and in the Turkish Cypriot Community. Smallest Geographic Unit: country ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Datasets: DS0: Study-Level Files DS1: GESIS DS2: ICPSR Eurobarometer Survey Series
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3886/icpsr25021.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3886/icpsr25021.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:EnviDat Authors: Buchmann, Nina; Feigenwinter, Iris; Hörtnagl, Lukas;doi: 10.16904/envidat.429
The Swiss FluxNet Site Davos is a managed subalpine evergreen forest, located on the Seehorn mountain near Davos in the Swiss Alps. The site is dominated by Norway spruce. The tower is owned by the Federal Office for the Environment (FOEN). Ecosystem flux measurements of CO2, H2O (since 1997) as well as CH4 and N2O (since 2016) are performed with the eddy covariance method. In addition to Swiss FluxNet, the site is part of the National Air Pollution Monitoring Network (NABEL), the Long term Forest Ecosystem Research (LWF), the biological drought and growth indicator network (TreeNet) and of ICOS Switzerland (Integrated Carbon Observation System). Since November 2019, the site is an ICOS Class 1 Ecosystem station.Measurements- Ecosystem flux measurements of CO2, H2O vapour (since 1997) as well a CH4 and N2O (since 2016) are performed with the eddy-covariance method. This method is based on measurements of trace gas mixing ratios, using infrared gas analyzers (for CO2, H2O vapor) and laser spectrometers (for CH4 and N2O), combined with wind speed and wind direction measurements, using 3D sonic anemometers. To resolve the short-term turbulent fluctuations in the atmosphere, very fast measurements are needed: we measure at 10-20 Hz, i.e., 10-20 times per second. To assess the energy budget of each ecosystem, also radiation sensors and soil climate profiles are installed at the site.- Sub-canopy eddy fluxes (CO2, H2O, since 2023 also CH4).- Continuous profile concentration and forest floor flux measurement of CO2, H2O, CH4, N2O.- Auxiliary micrometeorology and soil climate measurements.Data availabilityNear real-time flux and meteo data uploaded daily to the ICOS Carbon Portal. Processed flux and meteo data are also available from the European Fluxes Database Cluster and part of Fluxnet2015 dataset.Data policyICOS data license: [https://www.icos-cp.eu/data-services/about-data-portal/data-license](https://www.icos-cp.eu/data-services/about-data-portal/data-license)Detailed site info: [https://www.swissfluxnet.ethz.ch/index.php/sites/ch-dav-davos/site-info-ch-dav/](https://www.swissfluxnet.ethz.ch/index.php/sites/ch-dav-davos/site-info-ch-dav/)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:U.S. EPA Office of Research and Development (ORD) doi: 10.23719/1407615
This dataset is a journal article that describes the use of a system dynamics model to explore the synergies between transit and development strategies as they give rise to outcomes of community concern: environmental impacts, economic development and equity. The dataset includes the publication itself, the publication figures, the input and calibration data, the data dictionary and the model output data for the base scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23719/1407615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23719/1407615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 05 May 2023Publisher:Dryad Authors: Reidy, Jennifer; Sinnott, Emily; Thompson, Frank; O'Donnell, Lisa;We monitored golden-cheeked warbler territories in 10 plots within an urban preserve to determine abundance, delineate territories, and document breeding success. We determined environmental conditions across the study period to examine temporal and landscape effects. We then used these data to estimate adult survival and productivity and relate these vital rates to environmental conditions experienced during our study period. We used supported covariates to predict potential effects on this population 25 years into the future. These data and code are associated with the publication in Ecosphere entitled "Urban land cover and El Nino events negatively impact population viability of an endangered North American songbird." We performed an integrated population model to evaluate the effect of climate patterns and urban land cover on the viability of an endangered wood-warbler breeding in central Texas. We used territory monitroing data from 2011–2019 to predict viability of the population 25 years into the future. We assembled and conducted the analysis in R.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.p2ngf1vvc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.p2ngf1vvc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:Council for Scientific and Industrial Research Authors: Francois Engelbrecht;The analyses of future climate change over South Africa as described in the Third National Communication, are from the projections of the Coupled Global Climate Models (CGCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Assessment Report (AR) 5 of the Intergovernmental Panel on Climate Change (IPCC). These projections are used to inform on the uncertainty range of the large-scale climate change futures over the southern African region. At the Council for Scientific Industrial Research (CSIR), a dynamic regional climate model CCAM (conformal-cubic atmospheric model) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) was used to downscale CMIP5 CGCM projections to 50 km resolution over Africa. These downscalings were for both Representative Concentration Pathway (RCP) 8.5 and Representative Concentration Pathway (RCP) 4.5 of AR5 of the IPCC. RCP 4.5 describes a future with relatively ambitious emission reductions whereas RCP 8.5 describes a future with no reductions in emissions. Emissions in RCP 4.5 peak around 2040, then decline and in RCP 8.5 emissions continue to rise throughout the 21st century. The change in temperature is expressed as an anomaly, the difference between the average climate over a period of the last several decades (1971-2000), and the projected climate (short to medium term 2021 to 2050). The simulations were performed on supercomputers of the CSIRO and on the Centre for High Performance Computing (CHPC) of the Meraka Institute of the CSIR in South Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/nccis.data.10000031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:South African Environmental Observation Network Authors: Wim Hugo;Data was derived from the following sources: * Extent of underutilised and subsistence farmland, data obtained from Department of Agriculture, Forestry, and Fisheries. * On such land, groundnut potential was calculated from data published by Schulze and Maharaj (2007) on groundnut-growing potential. * Grain, Oil, Oilcake, and Residue production was calculated based on seed yields, and aggregated to meso-zones for planning and feasibility analysis. * Grain, Oil and Residue ratios were derived from literature
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15493/bea.data.10000077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Tatebe, Hiroaki; Watanabe, Masahiro;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MIROC.MIROC6.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmimihi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2009Publisher:Inter-university Consortium for Political and Social Research (ICPSR) Authors: Papacostas, Antonis;This round of Eurobarometer surveys queried respondents on standard Eurobarometer measures, such as how satisfied they were with their present life, whether they attempted to persuade others close to them to share their views on subjects they held strong opinions about, whether they discussed political matters, what their country's goals should be in the next 10 to 15 years, and how they viewed the need for societal change. Additional questions focused on the respondents' knowledge of and opinions on globalization and on the European Union (EU), including how well-informed they were about the EU, what sources of information about the EU they used, whether their country had benefited from being an EU member (or would benefit from being a future member), and the extent of their personal interest in EU matters. Other questions queried respondents about their country's public administration, the transparency of both their own government institutions and those of the EU, and how important they thought transparency was in their functioning. Respondents were asked which countries, specifically Turkey, Croatia, and the Former Yugoslav Republic of Macedonia, they would favor joining the EU. National and European identity is a major focus of the survey. Questions focused on to what extent respondents felt they were a citizen of their region, of their country, of Europe, and of the world, whether they were content with their identity, and their feelings on the importance of being European. The second major focus of the survey was European elections. Respondents were queried about their interest in the elections, whether or not they would vote, the main criteria in making these decisions, and what themes the electoral campaign should focus on. In addition, respondents were asked to name the party they voted for in the European Parliament (EP) elections in June 2004, May 2007, November 2007, and the latest parliamentary elections in their respective countries. For the third major focus, European values and value priorities, respondents were asked to identify their personal values, whether they thought EU member states shared common values, and how close or distant these shared values were. In addition, respondents were asked to select the most important values they associated with the idea of happiness. For the final major focus of the survey, climate change, respondents were queried about their knowledge of and views on climate change, including whether they thought climate change was a serious problem, whether enough is being done to fight it, and the reasons why individuals may or may not take action in fighting climate change. Respondents were also asked to identify the personal actions they have taken regarding climate change and to evaluate the objectives proposed by the EU to limit the impact of climate change. Demographic and other background information includes age, gender, nationality, origin of birth (personal and parental), marital status, left-right political self-placement, strength of party attachment, occupation, age when stopped full-time education, household composition, ownership of a fixed or a mobile telephone and other durable goods, type and size of locality, region of residence, and language of interview (in select countries). face-to-face interview The original data collection was carried out by TNS Opinion and Social on request of the European Commission Between March 25th 2008 and May 4, 2008. Data for this Eurobarometer study are being released in two parts. Part 1 includes original study materials supplied by GESIS: (1) SPSS portable file; (2) SPSS syntax file containing user-defined missing values; and (3) documentation files. These files are being released in a zipped package. A documentation file has been provided by ICPSR to describe the contents of this zipped package. Part 2 includes study materials supplied by ICPSR: (1) SPSS, SAS, and Stata setup files; (2) SPSS and Stata system files, and a SAS transport (CPORT) file; (3) ASCII column-delimited and tab-delimited data files; and (4) documentation files. The data in Part 1 and Part 2 are identical, except for the following: Variable V1 'ARCHIVE STUDY NUMBER - DISTRIBUTOR' in Part 2 has been recoded to the ICPSR study number. Documentation files have been provided both by GESIS and ICPSR; the ICPSR documentation files may contain additional information. Data on voting behavior in European (D53) and national parliamentary elections (D54), and on party attachment (D2) have now been provided by the data producer and are now available. The codebook and setup files for this collection contain characters with diacritical marks used in many European languages. A split ballot was used for one or more questions in this survey. The variable V892 defines the separate groups. The documentation and/or setup files may contain references to Norway, but Norway was not a participant in this wave of Eurobarometer surveys. This collection contains no data for Norway. The fieldwork dates in the data file for Malta and Croatia are not consistent with the fieldwork dates in the "Technical Specifications" section of the ICPSR codebook. No documentation was supplied by the data producer for responses to open specifications of "OTHER" items for questions QC4, QC6, QD7, QE1, QE6, QE7 and QE8. The basic sample design applied in all states is a multistage, random (probability) one. In each country, a number of sampling points were drawn with probability proportional to population size (for a total coverage of the country) and to population density. In order to do so, the sampling points were drawn systematically from each of the "administrative regional units", after stratification by individual unit and type of area. They thus represent the whole territory of the countries surveyed according to the EUROSTAT NUTS II (or equivalent) and according to the distribution of the resident population of the respective nationalities in terms of metropolitan, urban and rural areas. In each of the selected sampling points, a starting address was drawn, at random. Further addresses (every Nth address) were selected by standard "random route" procedures, from the initial address. In each household, the respondent was drawn, at random (following the "closest birthday rule"). All interviews were conducted face-to-face in people's homes and in the appropriate national language. As far as the data capture is concerned, CAPI (Computer Assisted Personal Interview) was used in those countries where this technique was available. Please refer to the GESIS documentation and Technical Specifications within the ICPSR Codebook for additional sampling information. For each country a comparison between the sample and the universe was carried out. The Universe description was derived from Eurostat population data or from national statistics offices. For all countries surveyed, a national weighting procedure, using marginal and intercellular weighting, was carried out based on this Universe description. In all countries, gender, age, region and size of locality were introduced in the iteration procedure. For international weighting (i.e. EU averages), TNS Opinion and Social applies the official population figures as provided by EUROSTAT or national statistic offices. Please refer to the GESIS Documentation and Technical Specifications within the ICPSR Codebook for additional weighting information. Citizens of the EU aged 15 and over residing in the 27 EU member countries: Austria, Belgium, Bulgaria, Republic of Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United Kingdom, and the national population of citizens and the population of citizens of all the EU member countries aged 15 and over residing in the three EU candidate countries: Croatia, Turkey, and the Former Yugoslav Republic of Macedonia, and in the Turkish Cypriot Community. Smallest Geographic Unit: country ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Datasets: DS0: Study-Level Files DS1: GESIS DS2: ICPSR Eurobarometer Survey Series
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3886/icpsr25021.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3886/icpsr25021.v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:EnviDat Authors: Buchmann, Nina; Feigenwinter, Iris; Hörtnagl, Lukas;doi: 10.16904/envidat.429
The Swiss FluxNet Site Davos is a managed subalpine evergreen forest, located on the Seehorn mountain near Davos in the Swiss Alps. The site is dominated by Norway spruce. The tower is owned by the Federal Office for the Environment (FOEN). Ecosystem flux measurements of CO2, H2O (since 1997) as well as CH4 and N2O (since 2016) are performed with the eddy covariance method. In addition to Swiss FluxNet, the site is part of the National Air Pollution Monitoring Network (NABEL), the Long term Forest Ecosystem Research (LWF), the biological drought and growth indicator network (TreeNet) and of ICOS Switzerland (Integrated Carbon Observation System). Since November 2019, the site is an ICOS Class 1 Ecosystem station.Measurements- Ecosystem flux measurements of CO2, H2O vapour (since 1997) as well a CH4 and N2O (since 2016) are performed with the eddy-covariance method. This method is based on measurements of trace gas mixing ratios, using infrared gas analyzers (for CO2, H2O vapor) and laser spectrometers (for CH4 and N2O), combined with wind speed and wind direction measurements, using 3D sonic anemometers. To resolve the short-term turbulent fluctuations in the atmosphere, very fast measurements are needed: we measure at 10-20 Hz, i.e., 10-20 times per second. To assess the energy budget of each ecosystem, also radiation sensors and soil climate profiles are installed at the site.- Sub-canopy eddy fluxes (CO2, H2O, since 2023 also CH4).- Continuous profile concentration and forest floor flux measurement of CO2, H2O, CH4, N2O.- Auxiliary micrometeorology and soil climate measurements.Data availabilityNear real-time flux and meteo data uploaded daily to the ICOS Carbon Portal. Processed flux and meteo data are also available from the European Fluxes Database Cluster and part of Fluxnet2015 dataset.Data policyICOS data license: [https://www.icos-cp.eu/data-services/about-data-portal/data-license](https://www.icos-cp.eu/data-services/about-data-portal/data-license)Detailed site info: [https://www.swissfluxnet.ethz.ch/index.php/sites/ch-dav-davos/site-info-ch-dav/](https://www.swissfluxnet.ethz.ch/index.php/sites/ch-dav-davos/site-info-ch-dav/)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:U.S. EPA Office of Research and Development (ORD) doi: 10.23719/1407615
This dataset is a journal article that describes the use of a system dynamics model to explore the synergies between transit and development strategies as they give rise to outcomes of community concern: environmental impacts, economic development and equity. The dataset includes the publication itself, the publication figures, the input and calibration data, the data dictionary and the model output data for the base scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23719/1407615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23719/1407615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 05 May 2023Publisher:Dryad Authors: Reidy, Jennifer; Sinnott, Emily; Thompson, Frank; O'Donnell, Lisa;We monitored golden-cheeked warbler territories in 10 plots within an urban preserve to determine abundance, delineate territories, and document breeding success. We determined environmental conditions across the study period to examine temporal and landscape effects. We then used these data to estimate adult survival and productivity and relate these vital rates to environmental conditions experienced during our study period. We used supported covariates to predict potential effects on this population 25 years into the future. These data and code are associated with the publication in Ecosphere entitled "Urban land cover and El Nino events negatively impact population viability of an endangered North American songbird." We performed an integrated population model to evaluate the effect of climate patterns and urban land cover on the viability of an endangered wood-warbler breeding in central Texas. We used territory monitroing data from 2011–2019 to predict viability of the population 25 years into the future. We assembled and conducted the analysis in R.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.p2ngf1vvc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.p2ngf1vvc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu