Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
464 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 7. Clean energy
  • 12. Responsible consumption
  • 11. Sustainability
  • Indonesian

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nitbani, Yerdi; Tarigan, Ben Vasco; Jasron, Jahirwan;

    The use of manure and litter as bio gas-producing material is one solving problem of sanitation and environmental health as well as the control of environmental pollution, especially in the vicinity of the farm and the market environment. To obtain biogas productivity and optimum quality then conducted a study with the aim to determine the effect of a composition ratio mix of fish maw, kale and feces of pigs against pH, productivity in this case, the gas pressure (Pa), gas mass (kg) and the volume of gas (m3), as well as the quality of the biogas as measured by the amount of calorific value (J), and power (watts), and the color of the flame produced. The results showed that the composition ratio of a mixture of 1: 1: 1 has the most stable pH with the average of 7. The gas pressure, gas mass and the volume of gas produced by the mixture composition ratio of 1: 1: 1 is larger than the composition ratio of a mixture of 2 : 1: 1, 1: 2: 1 and 1: 1: 2 with 3851.4 Pa gas pressure, gas mass kg 0.011568938 and 0.145424439 gas volume m3 calorific value of 19.680 kJ and 177.142 watts of power, as well as the color of the flame, produced that is blue. It can be concluded that the mixture composition ratio of 1: 1: 1 is the productivity and quality of the most optimal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zulfadli, Romie '; Helwani, Zuchra '; Bahri, Syaiful ';

    Indonesia has big amount of natural zeolite reserve which is spread in Sumatra, Java and Borneo. It can be utilized as catalyst in transesterification step to produce biodiesel from off grade palm fruit. This research aims to produce biodiesel from low quality raw material and determine the effectiveness of the process by looking at the process conditions effect such as temperature, methanol/oil molar ratio and catalyst concentration on the yield of biodiesel. Biodiesel production from off grade palm oil is done with two step reactions, that is esterification and transesterification. The esterification step is done to reduce free fatty acid (FFA) concentration till <2% as condition in transesterification step. Esterification step use H2SO4 as catalyst, whereas modified zeolite with KOH solution use in transesterification step. Both of process are done in three-neck flask, using magnetic stirrer and condenser. FFA concentration from raw material can be reduce from 11,32% to 0,989% in esterification step with 12:1 methanol/oil ratio, 60 oC temperature and 1%-wt catalyst concentration. Biodiesel with highest yield from transesterification step is 95,84% at 60 oC temperature, 8:1 methanol/oil ratio and 7,36% catalyst concentration. The result of research furthermore processed by Response Surface Methodology (RSM) to determine the effect of process condition toward biodiesel yield. Based on P-value analysis, process conditions that have real effect to the response (biodiesel yield) are temperature and catalyst concentration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramli, Iqbal; Irfan, Irfan;

    Utilization of alternative energy sources is still very minimal in the area of Losari Beach. Noise from visitors can be used as an alternative energy source in Losari Beach area. Sound saves potential energy that can be generated. In the process of utilization, piezoelectric material will be given input from the noise of the visitors of Losari Beach beach. This research will analyze the electrical energy generated (power on LED lamp) from piezoelectric material to various condition in Losari Beach area. The results of the study found the amount of output generated when the piezoelectric material is not coupled in series is 0.7 volts, while at the time strung in series reaches 1.9 volts. Makassar city government support, is expected in implementing the results of this study.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2017
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2017
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dewi, Indarti Komala; Istiadi, Yossa;

    The phenomenon of global warming which is accompanied by climate changed, is the real threat to the community in the present and future. Indonesia is one of the most vulnerable countries affected by climate change. Tasikmalaya is the district with rank of hazard indexes is 5th in Indonesia. Sub district Salawu in Tasikmalaya district is a disaster-prone districts. One kampong in Salawu which still holds strong culture and customs is Kampung Naga. The aim of the study were analyzed potential disaster that related of climate change in Kampung Naga, and analyzed the the abilities of Kampung Naga community in mitigating disaster of climate change. The study used a qualitative descriptive analysis method. Potential disaster analyzed qualitatively based on condition of geomorphologi and location. Disaster mitigation capabilities were analyzed qualitatively from customs. Based on geomorphologi condition and location, hazards of climate change that could potentially be disastrous in Kampung Naga were landslide and floods. The abilities of Kampung Naga community in disaster mitigation of climate change, is affected by the traditional wisdom that was reflected from forest conservation, building, infrastructure and spatial patterns of kampong which could prevent landslide and flood. Fenomena pemanasan gobal yang diiringi dengan terjadinya Perubahan iklim, merupakan ancaman nyata bagi masyarakat di masa kini dan yang akan datang.Indonesia merupakan salah satunegara yang rentan terkena dampak Perubahan iklim. Kabupaten Tasikmalaya menduduki urutan kelima peringkat indeks rawan bencana di Indonesia. Kecamatan Salawu di Kabupaten Tasikmalaya rawan bencana. Kampung Naga adalah kampung yang masih memegang kuat budaya dan adat di Kecamatan Salawu. Tujuan penelitian adalah untuk menganalisis potensi bencana terkait Perubahan iklim di Kampung Naga dan menganalisis kemampuan mitigasi bencana masyarakat Kampung Naga terhadap Perubahan iklim. Penelitian ini menggunakan metoda analisis deskriptif kualitatif. Potensi bencana dianalisis secara kualitatif berdasarkan kondisi geomorfologi dan lokasi kampung. Kemampuan mitigasi bencana dianalisis secara kualitatif berdasarkan adat istiadat. Bahaya akibat Perubahan iklim yang berpotensi menjadi bencana di Kampung Naga adalah tanah longsor dan banjir. Kemampuan mitigasi bencana masyarakat Kampung Naga terhadap Perubahan iklim dipengaruhi kearifan tradisional yang tercermin dari konservasi hutan, bangunan, infrastruktur dan pola ruang kampung yang dapat mengurangi ancaman bencanatanah longsor dan banjir.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bestari, Arifani; Sutrisno, Endro; Sumiyati, Sri;

    Banana peel (musa sapientum) is organic waste that have value of carbohydrates that high and nutrition that can help the growth of a microbe. Based on it, then appears an idea to make use of the bioethanol from the peel as a source of raw materials. Bioethanol is one alternative energy that are spoken currently who is expected to replace energy source of petroleum that has existed that is the fluid a result fermentation of sugar from sources of carbohydrate used the aid microorganisms. In this research process of waste the banana peel become bioethanol is aimed to determine the process of waste the banana peel plantain and kepok, ranging from process of smoothing the hydrolysis of, fermentation until distillation of which are then analyzed levels of each bioetanol each kind of the banana peel based on the number of yeast and time. In this process of fermentation by the addition of saccharomyces cerevisiae by number of yeast, as many as 3 5, 7 gram with long fermentation different namely during 2, 4, 6, 8 days influencing the outcome of the level of bioethanol on the type of skin of plantain and kepok. This result of research produce levels of bioethanol the most high that is on the type of kepok banana peel with yeast fermentation as many as seven gram during the time of 8 days worth 17.05 % while on the peel of plantain with heavy yeast and the same time having bioetanol levels as many as 16.55 %. The longer fermentation, microorganisms more active and the extension of yeast the result of ethanol is increasing contained in a sample of the banana peel with heavy yeast 3, 5 grams, 7 gram levels of ethanol more robust on the day to 8.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nopriza, Feni '; Bahri, Syaiful '; ', Yusnimar ';

    Biodiesel is an alternative fuel from renewable raw materials. One of the raw material can be used to make biodiesel is coconut oil. This research aims is determine the maximum biodiesel yield by using varying amounts of H-zeolite catalyst and methanol mole ratios of coconut oil through a process methanolysis. The independent variables used in this study is the mole ratio of methanol-oil 3: 1; 6: 1; 8: 1 9: 1 and catalyst concentration of 1%, 2%, 3% respectively. Temperature of 60°C, 1.5 hours and stirrer speed is keep constant. The yield of biodiesel produced in this study reached 84.78% at a concentration of 2% catalyst mole ratio of methanol-oil 6: 1. The density of biodieselproduced at the maximum yield was 880.90 kg / m3, kinematic viscosity of 4.59 mm2 / s, the flashpoint of 110oC, the water content of 0.048% v, and the acid number of 0.65 mg KOH / g, respectively in addition, analysis of the chemical compositions of biodiesel is used GC - MS. All the characteristics of the physical properties of biodiesel produced have met the standard range contained in the SNI 04-7182-2006.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pramushinta, Diah; Amraini, Said Zul; Chairul, Chairul;

    One of the alternatives is by utilizing bioethanol as a renewable alternative energy source. This study aims to obtain ethanol from pineapple feel using solid state fermentation process and the purification using distillation and adsorption process, obtain comparative data on the adsorption capacity of the natural zeolite without activation and the activated natural zeolite, to get data the optimum of adsorbent to produce bioethanol, and characterize the physical properties of bioethanol and qualitative test by GC-MS. The pore size of adsorbent variations are 60; 100; 200 mesh and variation of treatment of adsorbent the natural zeolite without activation and the activated natural. From the research is obtained the highest bioethanol concentration average is 10,44 % volume. The most effective process for ethanol purification is distillation and adsorption process by natural zeolite adsorbent without activation with pore size of 200 mesh. Ethanol content increased from 95 % to 99.8 % v. Bioethanol from distillation and adsorption process in accordance with ISO standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Walidah, Tafrikhatul; Chairul, Chairul; Amri, Amun;

    Indonesia has petroleum reserves about 9 billion barrels, which the average production rate is 0.5 billion barrels per year, and was predicted would be exhaust within 18 years. Government has ordered a program and policy to develop bioethanol and biodiesel for the energy crisis in Indonesia. It is targeted can be provide about 15-20% of the fuel for transportation and national industry in 2025. This research's goals were to produce fuel grade ethanol by distillation-adsorption method, determined the effect of activation temperature of bentonite and the effect ratio of bentonite to bioethanol. The raw materials were bioethanol from nypa sap (8% ethanol content). The ethanol concentration was not too high, so it needed to improve its purity by distillation-adsorption process. The research was held in three phases, which were distillation of nypa sap's bioethanol to 96% ethanol content, activation of bentonite, and distillation-adsorption using activated bentonite. Activation temperature of bentonite were 400oC, 500oC and the ratio of bentonite:bioethanol were 1:2; 1:3; and 1:4. The most effective process for the purification of bioethanol was distillation-adsorption at 500oC activated temperature and the ratio of bentonite:bioethanol was 1:2 with the purity is 99.5% and has been categorized as a fuel grade ethanol

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maulana, Firman; Syarfi, Syarfi; Zahrina, Ida;

    The cost of biodiesel production process is still a challenge, it needs to explore any raw material which is economically inexpensive and effective technologies to overcome the problem. CPO off grade is deemed economically potential to be processed into biodiesel because its inexpensive cost . Membrane reactor is an alternative technology that need to be developed to address this challenge . The research aimed to study the effect of oil to methanol mole ratio and transmembrane pressure on biodiesel production from CPO Off Grade . The study was conducted using two- step process , namely the process of esterification and transesterification process . Esterification process was carried out with variation of oil to methanol mole ratio of 1:12. The amount acid catalyst used is 2 % by weight of oil and reaction time of 2 hours . Transesterification process is carried out on membrane reactor with variation of oil to methanol mole ratio of 1:12 , 1:16 and 1:20 and transmembrane pressure of 1 bar , 1.5 bar , 2 bars and a catalyst concentration of 1 wt% base oil and process temperature of 60 º C. The results showed the highest conversion reached 80.14 % at the mole ratio of 1:20 and transmembrane pressure of 2 bar

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Joko Nursanto;

    Power Boats is a means of transportation in an environmentally friendly water using solar systems, which transform the energy of sunlight into electrical energy stored in the battery and later as an energy source to drive an electric boat engines. This electric boats as the development of renewable energy do not use fuel that is increasingly growing number of limited and expensive prices. Electric boats have a speed of 7 km / h and can operate for approximately 11.46 hours. The electric boats using solar panels solar Skytech SIM-100 wp, Trojan 31-GEL battery with a capacity of 102 Ah, Solar Charge Controller Shinyoku SC 990 (12V - 10A) engine powered boat Trolling Motor 0.50 pk made in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
464 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nitbani, Yerdi; Tarigan, Ben Vasco; Jasron, Jahirwan;

    The use of manure and litter as bio gas-producing material is one solving problem of sanitation and environmental health as well as the control of environmental pollution, especially in the vicinity of the farm and the market environment. To obtain biogas productivity and optimum quality then conducted a study with the aim to determine the effect of a composition ratio mix of fish maw, kale and feces of pigs against pH, productivity in this case, the gas pressure (Pa), gas mass (kg) and the volume of gas (m3), as well as the quality of the biogas as measured by the amount of calorific value (J), and power (watts), and the color of the flame produced. The results showed that the composition ratio of a mixture of 1: 1: 1 has the most stable pH with the average of 7. The gas pressure, gas mass and the volume of gas produced by the mixture composition ratio of 1: 1: 1 is larger than the composition ratio of a mixture of 2 : 1: 1, 1: 2: 1 and 1: 1: 2 with 3851.4 Pa gas pressure, gas mass kg 0.011568938 and 0.145424439 gas volume m3 calorific value of 19.680 kJ and 177.142 watts of power, as well as the color of the flame, produced that is blue. It can be concluded that the mixture composition ratio of 1: 1: 1 is the productivity and quality of the most optimal.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zulfadli, Romie '; Helwani, Zuchra '; Bahri, Syaiful ';

    Indonesia has big amount of natural zeolite reserve which is spread in Sumatra, Java and Borneo. It can be utilized as catalyst in transesterification step to produce biodiesel from off grade palm fruit. This research aims to produce biodiesel from low quality raw material and determine the effectiveness of the process by looking at the process conditions effect such as temperature, methanol/oil molar ratio and catalyst concentration on the yield of biodiesel. Biodiesel production from off grade palm oil is done with two step reactions, that is esterification and transesterification. The esterification step is done to reduce free fatty acid (FFA) concentration till <2% as condition in transesterification step. Esterification step use H2SO4 as catalyst, whereas modified zeolite with KOH solution use in transesterification step. Both of process are done in three-neck flask, using magnetic stirrer and condenser. FFA concentration from raw material can be reduce from 11,32% to 0,989% in esterification step with 12:1 methanol/oil ratio, 60 oC temperature and 1%-wt catalyst concentration. Biodiesel with highest yield from transesterification step is 95,84% at 60 oC temperature, 8:1 methanol/oil ratio and 7,36% catalyst concentration. The result of research furthermore processed by Response Surface Methodology (RSM) to determine the effect of process condition toward biodiesel yield. Based on P-value analysis, process conditions that have real effect to the response (biodiesel yield) are temperature and catalyst concentration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramli, Iqbal; Irfan, Irfan;

    Utilization of alternative energy sources is still very minimal in the area of Losari Beach. Noise from visitors can be used as an alternative energy source in Losari Beach area. Sound saves potential energy that can be generated. In the process of utilization, piezoelectric material will be given input from the noise of the visitors of Losari Beach beach. This research will analyze the electrical energy generated (power on LED lamp) from piezoelectric material to various condition in Losari Beach area. The results of the study found the amount of output generated when the piezoelectric material is not coupled in series is 0.7 volts, while at the time strung in series reaches 1.9 volts. Makassar city government support, is expected in implementing the results of this study.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2017
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2017
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dewi, Indarti Komala; Istiadi, Yossa;

    The phenomenon of global warming which is accompanied by climate changed, is the real threat to the community in the present and future. Indonesia is one of the most vulnerable countries affected by climate change. Tasikmalaya is the district with rank of hazard indexes is 5th in Indonesia. Sub district Salawu in Tasikmalaya district is a disaster-prone districts. One kampong in Salawu which still holds strong culture and customs is Kampung Naga. The aim of the study were analyzed potential disaster that related of climate change in Kampung Naga, and analyzed the the abilities of Kampung Naga community in mitigating disaster of climate change. The study used a qualitative descriptive analysis method. Potential disaster analyzed qualitatively based on condition of geomorphologi and location. Disaster mitigation capabilities were analyzed qualitatively from customs. Based on geomorphologi condition and location, hazards of climate change that could potentially be disastrous in Kampung Naga were landslide and floods. The abilities of Kampung Naga community in disaster mitigation of climate change, is affected by the traditional wisdom that was reflected from forest conservation, building, infrastructure and spatial patterns of kampong which could prevent landslide and flood. Fenomena pemanasan gobal yang diiringi dengan terjadinya Perubahan iklim, merupakan ancaman nyata bagi masyarakat di masa kini dan yang akan datang.Indonesia merupakan salah satunegara yang rentan terkena dampak Perubahan iklim. Kabupaten Tasikmalaya menduduki urutan kelima peringkat indeks rawan bencana di Indonesia. Kecamatan Salawu di Kabupaten Tasikmalaya rawan bencana. Kampung Naga adalah kampung yang masih memegang kuat budaya dan adat di Kecamatan Salawu. Tujuan penelitian adalah untuk menganalisis potensi bencana terkait Perubahan iklim di Kampung Naga dan menganalisis kemampuan mitigasi bencana masyarakat Kampung Naga terhadap Perubahan iklim. Penelitian ini menggunakan metoda analisis deskriptif kualitatif. Potensi bencana dianalisis secara kualitatif berdasarkan kondisi geomorfologi dan lokasi kampung. Kemampuan mitigasi bencana dianalisis secara kualitatif berdasarkan adat istiadat. Bahaya akibat Perubahan iklim yang berpotensi menjadi bencana di Kampung Naga adalah tanah longsor dan banjir. Kemampuan mitigasi bencana masyarakat Kampung Naga terhadap Perubahan iklim dipengaruhi kearifan tradisional yang tercermin dari konservasi hutan, bangunan, infrastruktur dan pola ruang kampung yang dapat mengurangi ancaman bencanatanah longsor dan banjir.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bestari, Arifani; Sutrisno, Endro; Sumiyati, Sri;

    Banana peel (musa sapientum) is organic waste that have value of carbohydrates that high and nutrition that can help the growth of a microbe. Based on it, then appears an idea to make use of the bioethanol from the peel as a source of raw materials. Bioethanol is one alternative energy that are spoken currently who is expected to replace energy source of petroleum that has existed that is the fluid a result fermentation of sugar from sources of carbohydrate used the aid microorganisms. In this research process of waste the banana peel become bioethanol is aimed to determine the process of waste the banana peel plantain and kepok, ranging from process of smoothing the hydrolysis of, fermentation until distillation of which are then analyzed levels of each bioetanol each kind of the banana peel based on the number of yeast and time. In this process of fermentation by the addition of saccharomyces cerevisiae by number of yeast, as many as 3 5, 7 gram with long fermentation different namely during 2, 4, 6, 8 days influencing the outcome of the level of bioethanol on the type of skin of plantain and kepok. This result of research produce levels of bioethanol the most high that is on the type of kepok banana peel with yeast fermentation as many as seven gram during the time of 8 days worth 17.05 % while on the peel of plantain with heavy yeast and the same time having bioetanol levels as many as 16.55 %. The longer fermentation, microorganisms more active and the extension of yeast the result of ethanol is increasing contained in a sample of the banana peel with heavy yeast 3, 5 grams, 7 gram levels of ethanol more robust on the day to 8.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nopriza, Feni '; Bahri, Syaiful '; ', Yusnimar ';

    Biodiesel is an alternative fuel from renewable raw materials. One of the raw material can be used to make biodiesel is coconut oil. This research aims is determine the maximum biodiesel yield by using varying amounts of H-zeolite catalyst and methanol mole ratios of coconut oil through a process methanolysis. The independent variables used in this study is the mole ratio of methanol-oil 3: 1; 6: 1; 8: 1 9: 1 and catalyst concentration of 1%, 2%, 3% respectively. Temperature of 60°C, 1.5 hours and stirrer speed is keep constant. The yield of biodiesel produced in this study reached 84.78% at a concentration of 2% catalyst mole ratio of methanol-oil 6: 1. The density of biodieselproduced at the maximum yield was 880.90 kg / m3, kinematic viscosity of 4.59 mm2 / s, the flashpoint of 110oC, the water content of 0.048% v, and the acid number of 0.65 mg KOH / g, respectively in addition, analysis of the chemical compositions of biodiesel is used GC - MS. All the characteristics of the physical properties of biodiesel produced have met the standard range contained in the SNI 04-7182-2006.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pramushinta, Diah; Amraini, Said Zul; Chairul, Chairul;

    One of the alternatives is by utilizing bioethanol as a renewable alternative energy source. This study aims to obtain ethanol from pineapple feel using solid state fermentation process and the purification using distillation and adsorption process, obtain comparative data on the adsorption capacity of the natural zeolite without activation and the activated natural zeolite, to get data the optimum of adsorbent to produce bioethanol, and characterize the physical properties of bioethanol and qualitative test by GC-MS. The pore size of adsorbent variations are 60; 100; 200 mesh and variation of treatment of adsorbent the natural zeolite without activation and the activated natural. From the research is obtained the highest bioethanol concentration average is 10,44 % volume. The most effective process for ethanol purification is distillation and adsorption process by natural zeolite adsorbent without activation with pore size of 200 mesh. Ethanol content increased from 95 % to 99.8 % v. Bioethanol from distillation and adsorption process in accordance with ISO standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Walidah, Tafrikhatul; Chairul, Chairul; Amri, Amun;

    Indonesia has petroleum reserves about 9 billion barrels, which the average production rate is 0.5 billion barrels per year, and was predicted would be exhaust within 18 years. Government has ordered a program and policy to develop bioethanol and biodiesel for the energy crisis in Indonesia. It is targeted can be provide about 15-20% of the fuel for transportation and national industry in 2025. This research's goals were to produce fuel grade ethanol by distillation-adsorption method, determined the effect of activation temperature of bentonite and the effect ratio of bentonite to bioethanol. The raw materials were bioethanol from nypa sap (8% ethanol content). The ethanol concentration was not too high, so it needed to improve its purity by distillation-adsorption process. The research was held in three phases, which were distillation of nypa sap's bioethanol to 96% ethanol content, activation of bentonite, and distillation-adsorption using activated bentonite. Activation temperature of bentonite were 400oC, 500oC and the ratio of bentonite:bioethanol were 1:2; 1:3; and 1:4. The most effective process for the purification of bioethanol was distillation-adsorption at 500oC activated temperature and the ratio of bentonite:bioethanol was 1:2 with the purity is 99.5% and has been categorized as a fuel grade ethanol

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maulana, Firman; Syarfi, Syarfi; Zahrina, Ida;

    The cost of biodiesel production process is still a challenge, it needs to explore any raw material which is economically inexpensive and effective technologies to overcome the problem. CPO off grade is deemed economically potential to be processed into biodiesel because its inexpensive cost . Membrane reactor is an alternative technology that need to be developed to address this challenge . The research aimed to study the effect of oil to methanol mole ratio and transmembrane pressure on biodiesel production from CPO Off Grade . The study was conducted using two- step process , namely the process of esterification and transesterification process . Esterification process was carried out with variation of oil to methanol mole ratio of 1:12. The amount acid catalyst used is 2 % by weight of oil and reaction time of 2 hours . Transesterification process is carried out on membrane reactor with variation of oil to methanol mole ratio of 1:12 , 1:16 and 1:20 and transmembrane pressure of 1 bar , 1.5 bar , 2 bars and a catalyst concentration of 1 wt% base oil and process temperature of 60 º C. The results showed the highest conversion reached 80.14 % at the mole ratio of 1:20 and transmembrane pressure of 2 bar

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Joko Nursanto;

    Power Boats is a means of transportation in an environmentally friendly water using solar systems, which transform the energy of sunlight into electrical energy stored in the battery and later as an energy source to drive an electric boat engines. This electric boats as the development of renewable energy do not use fuel that is increasingly growing number of limited and expensive prices. Electric boats have a speed of 7 km / h and can operate for approximately 11.46 hours. The electric boats using solar panels solar Skytech SIM-100 wp, Trojan 31-GEL battery with a capacity of 102 Ah, Solar Charge Controller Shinyoku SC 990 (12V - 10A) engine powered boat Trolling Motor 0.50 pk made in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.