Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
477 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 7. Clean energy
  • 2. Zero hunger
  • 1. No poverty
  • Indonesian

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zulfadli, Romie '; Helwani, Zuchra '; Bahri, Syaiful ';

    Indonesia has big amount of natural zeolite reserve which is spread in Sumatra, Java and Borneo. It can be utilized as catalyst in transesterification step to produce biodiesel from off grade palm fruit. This research aims to produce biodiesel from low quality raw material and determine the effectiveness of the process by looking at the process conditions effect such as temperature, methanol/oil molar ratio and catalyst concentration on the yield of biodiesel. Biodiesel production from off grade palm oil is done with two step reactions, that is esterification and transesterification. The esterification step is done to reduce free fatty acid (FFA) concentration till <2% as condition in transesterification step. Esterification step use H2SO4 as catalyst, whereas modified zeolite with KOH solution use in transesterification step. Both of process are done in three-neck flask, using magnetic stirrer and condenser. FFA concentration from raw material can be reduce from 11,32% to 0,989% in esterification step with 12:1 methanol/oil ratio, 60 oC temperature and 1%-wt catalyst concentration. Biodiesel with highest yield from transesterification step is 95,84% at 60 oC temperature, 8:1 methanol/oil ratio and 7,36% catalyst concentration. The result of research furthermore processed by Response Surface Methodology (RSM) to determine the effect of process condition toward biodiesel yield. Based on P-value analysis, process conditions that have real effect to the response (biodiesel yield) are temperature and catalyst concentration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramli, Iqbal; Irfan, Irfan;

    Utilization of alternative energy sources is still very minimal in the area of Losari Beach. Noise from visitors can be used as an alternative energy source in Losari Beach area. Sound saves potential energy that can be generated. In the process of utilization, piezoelectric material will be given input from the noise of the visitors of Losari Beach beach. This research will analyze the electrical energy generated (power on LED lamp) from piezoelectric material to various condition in Losari Beach area. The results of the study found the amount of output generated when the piezoelectric material is not coupled in series is 0.7 volts, while at the time strung in series reaches 1.9 volts. Makassar city government support, is expected in implementing the results of this study.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2017
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2017
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bestari, Arifani; Sutrisno, Endro; Sumiyati, Sri;

    Banana peel (musa sapientum) is organic waste that have value of carbohydrates that high and nutrition that can help the growth of a microbe. Based on it, then appears an idea to make use of the bioethanol from the peel as a source of raw materials. Bioethanol is one alternative energy that are spoken currently who is expected to replace energy source of petroleum that has existed that is the fluid a result fermentation of sugar from sources of carbohydrate used the aid microorganisms. In this research process of waste the banana peel become bioethanol is aimed to determine the process of waste the banana peel plantain and kepok, ranging from process of smoothing the hydrolysis of, fermentation until distillation of which are then analyzed levels of each bioetanol each kind of the banana peel based on the number of yeast and time. In this process of fermentation by the addition of saccharomyces cerevisiae by number of yeast, as many as 3 5, 7 gram with long fermentation different namely during 2, 4, 6, 8 days influencing the outcome of the level of bioethanol on the type of skin of plantain and kepok. This result of research produce levels of bioethanol the most high that is on the type of kepok banana peel with yeast fermentation as many as seven gram during the time of 8 days worth 17.05 % while on the peel of plantain with heavy yeast and the same time having bioetanol levels as many as 16.55 %. The longer fermentation, microorganisms more active and the extension of yeast the result of ethanol is increasing contained in a sample of the banana peel with heavy yeast 3, 5 grams, 7 gram levels of ethanol more robust on the day to 8.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gusti Rusmayadi; Handoko Handoko; Yonny Koesmaryono; Didiek Hadjar Goenadi;

    Plant growth interpretation in term of accumulated intercepted solar radiation and the radiation use efficiency (RUE) was used to study the growth and analysis of Jatropha (Jatropha curcas L.). A number of crop growth simulation models have been developed using the RUE concept to predict crop growth and yield in various environments. These models generally calculate daily biomass production as the product of the quantity of radiation intercepted and RUE. This research was carried out to quantify the RUE, biomass and leaf area index on Jatropha under rainfall condition, four levels of nitrogen fertilizer (N) and three population densities (P) planted twice. The experiments used a systematic Nelder fan design with 9 spokes and 4 – 5 rings were conducted at SEAMEO-BIOTROP field experiment in 2007. Data from the first experiment were used for parameterization and calibration and the second experiment data for model validation. Values of RUE were determined by nitrogen fertilizer and plant density. Based on parameterization, we found that RUE for prediction above ground biomass accumulation of Jatropha were 0.94 (r=0.83) g MJ-1 to 1.3 (r=0.75) g MJ-1. Validation between model prediction and field experimental data showed that model can simulate crop growth and development of Jatropha.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2008
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2008
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nopriza, Feni '; Bahri, Syaiful '; ', Yusnimar ';

    Biodiesel is an alternative fuel from renewable raw materials. One of the raw material can be used to make biodiesel is coconut oil. This research aims is determine the maximum biodiesel yield by using varying amounts of H-zeolite catalyst and methanol mole ratios of coconut oil through a process methanolysis. The independent variables used in this study is the mole ratio of methanol-oil 3: 1; 6: 1; 8: 1 9: 1 and catalyst concentration of 1%, 2%, 3% respectively. Temperature of 60°C, 1.5 hours and stirrer speed is keep constant. The yield of biodiesel produced in this study reached 84.78% at a concentration of 2% catalyst mole ratio of methanol-oil 6: 1. The density of biodieselproduced at the maximum yield was 880.90 kg / m3, kinematic viscosity of 4.59 mm2 / s, the flashpoint of 110oC, the water content of 0.048% v, and the acid number of 0.65 mg KOH / g, respectively in addition, analysis of the chemical compositions of biodiesel is used GC - MS. All the characteristics of the physical properties of biodiesel produced have met the standard range contained in the SNI 04-7182-2006.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pramushinta, Diah; Amraini, Said Zul; Chairul, Chairul;

    One of the alternatives is by utilizing bioethanol as a renewable alternative energy source. This study aims to obtain ethanol from pineapple feel using solid state fermentation process and the purification using distillation and adsorption process, obtain comparative data on the adsorption capacity of the natural zeolite without activation and the activated natural zeolite, to get data the optimum of adsorbent to produce bioethanol, and characterize the physical properties of bioethanol and qualitative test by GC-MS. The pore size of adsorbent variations are 60; 100; 200 mesh and variation of treatment of adsorbent the natural zeolite without activation and the activated natural. From the research is obtained the highest bioethanol concentration average is 10,44 % volume. The most effective process for ethanol purification is distillation and adsorption process by natural zeolite adsorbent without activation with pore size of 200 mesh. Ethanol content increased from 95 % to 99.8 % v. Bioethanol from distillation and adsorption process in accordance with ISO standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Walidah, Tafrikhatul; Chairul, Chairul; Amri, Amun;

    Indonesia has petroleum reserves about 9 billion barrels, which the average production rate is 0.5 billion barrels per year, and was predicted would be exhaust within 18 years. Government has ordered a program and policy to develop bioethanol and biodiesel for the energy crisis in Indonesia. It is targeted can be provide about 15-20% of the fuel for transportation and national industry in 2025. This research's goals were to produce fuel grade ethanol by distillation-adsorption method, determined the effect of activation temperature of bentonite and the effect ratio of bentonite to bioethanol. The raw materials were bioethanol from nypa sap (8% ethanol content). The ethanol concentration was not too high, so it needed to improve its purity by distillation-adsorption process. The research was held in three phases, which were distillation of nypa sap's bioethanol to 96% ethanol content, activation of bentonite, and distillation-adsorption using activated bentonite. Activation temperature of bentonite were 400oC, 500oC and the ratio of bentonite:bioethanol were 1:2; 1:3; and 1:4. The most effective process for the purification of bioethanol was distillation-adsorption at 500oC activated temperature and the ratio of bentonite:bioethanol was 1:2 with the purity is 99.5% and has been categorized as a fuel grade ethanol

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maulana, Firman; Syarfi, Syarfi; Zahrina, Ida;

    The cost of biodiesel production process is still a challenge, it needs to explore any raw material which is economically inexpensive and effective technologies to overcome the problem. CPO off grade is deemed economically potential to be processed into biodiesel because its inexpensive cost . Membrane reactor is an alternative technology that need to be developed to address this challenge . The research aimed to study the effect of oil to methanol mole ratio and transmembrane pressure on biodiesel production from CPO Off Grade . The study was conducted using two- step process , namely the process of esterification and transesterification process . Esterification process was carried out with variation of oil to methanol mole ratio of 1:12. The amount acid catalyst used is 2 % by weight of oil and reaction time of 2 hours . Transesterification process is carried out on membrane reactor with variation of oil to methanol mole ratio of 1:12 , 1:16 and 1:20 and transmembrane pressure of 1 bar , 1.5 bar , 2 bars and a catalyst concentration of 1 wt% base oil and process temperature of 60 º C. The results showed the highest conversion reached 80.14 % at the mole ratio of 1:20 and transmembrane pressure of 2 bar

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Joko Nursanto;

    Power Boats is a means of transportation in an environmentally friendly water using solar systems, which transform the energy of sunlight into electrical energy stored in the battery and later as an energy source to drive an electric boat engines. This electric boats as the development of renewable energy do not use fuel that is increasingly growing number of limited and expensive prices. Electric boats have a speed of 7 km / h and can operate for approximately 11.46 hours. The electric boats using solar panels solar Skytech SIM-100 wp, Trojan 31-GEL battery with a capacity of 102 Ah, Solar Charge Controller Shinyoku SC 990 (12V - 10A) engine powered boat Trolling Motor 0.50 pk made in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ismanto, Andi; Wicakssana, Bayu; Kurniawan, Hendi Okta; Wiranata, Muhammad Fendi;

    The process of exhausting long melon cultivation is one of the rarity factor farmers grow the The long and exhausting process in melon cultivation is one of factor the farmer rarity to grow up the fruit. The liquid fertilization is done once per 2/3 days. And the spraying can reach up to 23 time until the harvesting. Not maximum liquid fertilization will take longer time and more draining. Thats way, it needs a technology which can solve both these problems in one tool. This tool is called eco splash tank. This tank can also used in remote area without electricity because it is equipped by solar panels for energy source. the one wheel using for design makes the eco splash tank has capacity 30 L and strong. The result for a single full charge can be turned on and pump for 8 hrs. and the charging time for solar panels to accu until full is 9,5 hrs. in a pilot watering can be done up to 30 plants/minute and spray up to 27 plants/minute. It increases from 20 plants/minute(watering) and 17 plants/minute (spraying). In addition the functional benefits are felt by farmers. Because they don't need to hold, pump, and by the fuel. furthermore the design of eco splash tank will be developped for agricultural crops and then RAMP Technopreneurship, patent, and a list of 107 Innovation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
477 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zulfadli, Romie '; Helwani, Zuchra '; Bahri, Syaiful ';

    Indonesia has big amount of natural zeolite reserve which is spread in Sumatra, Java and Borneo. It can be utilized as catalyst in transesterification step to produce biodiesel from off grade palm fruit. This research aims to produce biodiesel from low quality raw material and determine the effectiveness of the process by looking at the process conditions effect such as temperature, methanol/oil molar ratio and catalyst concentration on the yield of biodiesel. Biodiesel production from off grade palm oil is done with two step reactions, that is esterification and transesterification. The esterification step is done to reduce free fatty acid (FFA) concentration till <2% as condition in transesterification step. Esterification step use H2SO4 as catalyst, whereas modified zeolite with KOH solution use in transesterification step. Both of process are done in three-neck flask, using magnetic stirrer and condenser. FFA concentration from raw material can be reduce from 11,32% to 0,989% in esterification step with 12:1 methanol/oil ratio, 60 oC temperature and 1%-wt catalyst concentration. Biodiesel with highest yield from transesterification step is 95,84% at 60 oC temperature, 8:1 methanol/oil ratio and 7,36% catalyst concentration. The result of research furthermore processed by Response Surface Methodology (RSM) to determine the effect of process condition toward biodiesel yield. Based on P-value analysis, process conditions that have real effect to the response (biodiesel yield) are temperature and catalyst concentration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramli, Iqbal; Irfan, Irfan;

    Utilization of alternative energy sources is still very minimal in the area of Losari Beach. Noise from visitors can be used as an alternative energy source in Losari Beach area. Sound saves potential energy that can be generated. In the process of utilization, piezoelectric material will be given input from the noise of the visitors of Losari Beach beach. This research will analyze the electrical energy generated (power on LED lamp) from piezoelectric material to various condition in Losari Beach area. The results of the study found the amount of output generated when the piezoelectric material is not coupled in series is 0.7 volts, while at the time strung in series reaches 1.9 volts. Makassar city government support, is expected in implementing the results of this study.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2017
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2017
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bestari, Arifani; Sutrisno, Endro; Sumiyati, Sri;

    Banana peel (musa sapientum) is organic waste that have value of carbohydrates that high and nutrition that can help the growth of a microbe. Based on it, then appears an idea to make use of the bioethanol from the peel as a source of raw materials. Bioethanol is one alternative energy that are spoken currently who is expected to replace energy source of petroleum that has existed that is the fluid a result fermentation of sugar from sources of carbohydrate used the aid microorganisms. In this research process of waste the banana peel become bioethanol is aimed to determine the process of waste the banana peel plantain and kepok, ranging from process of smoothing the hydrolysis of, fermentation until distillation of which are then analyzed levels of each bioetanol each kind of the banana peel based on the number of yeast and time. In this process of fermentation by the addition of saccharomyces cerevisiae by number of yeast, as many as 3 5, 7 gram with long fermentation different namely during 2, 4, 6, 8 days influencing the outcome of the level of bioethanol on the type of skin of plantain and kepok. This result of research produce levels of bioethanol the most high that is on the type of kepok banana peel with yeast fermentation as many as seven gram during the time of 8 days worth 17.05 % while on the peel of plantain with heavy yeast and the same time having bioetanol levels as many as 16.55 %. The longer fermentation, microorganisms more active and the extension of yeast the result of ethanol is increasing contained in a sample of the banana peel with heavy yeast 3, 5 grams, 7 gram levels of ethanol more robust on the day to 8.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gusti Rusmayadi; Handoko Handoko; Yonny Koesmaryono; Didiek Hadjar Goenadi;

    Plant growth interpretation in term of accumulated intercepted solar radiation and the radiation use efficiency (RUE) was used to study the growth and analysis of Jatropha (Jatropha curcas L.). A number of crop growth simulation models have been developed using the RUE concept to predict crop growth and yield in various environments. These models generally calculate daily biomass production as the product of the quantity of radiation intercepted and RUE. This research was carried out to quantify the RUE, biomass and leaf area index on Jatropha under rainfall condition, four levels of nitrogen fertilizer (N) and three population densities (P) planted twice. The experiments used a systematic Nelder fan design with 9 spokes and 4 – 5 rings were conducted at SEAMEO-BIOTROP field experiment in 2007. Data from the first experiment were used for parameterization and calibration and the second experiment data for model validation. Values of RUE were determined by nitrogen fertilizer and plant density. Based on parameterization, we found that RUE for prediction above ground biomass accumulation of Jatropha were 0.94 (r=0.83) g MJ-1 to 1.3 (r=0.75) g MJ-1. Validation between model prediction and field experimental data showed that model can simulate crop growth and development of Jatropha.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2008
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2008
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nopriza, Feni '; Bahri, Syaiful '; ', Yusnimar ';

    Biodiesel is an alternative fuel from renewable raw materials. One of the raw material can be used to make biodiesel is coconut oil. This research aims is determine the maximum biodiesel yield by using varying amounts of H-zeolite catalyst and methanol mole ratios of coconut oil through a process methanolysis. The independent variables used in this study is the mole ratio of methanol-oil 3: 1; 6: 1; 8: 1 9: 1 and catalyst concentration of 1%, 2%, 3% respectively. Temperature of 60°C, 1.5 hours and stirrer speed is keep constant. The yield of biodiesel produced in this study reached 84.78% at a concentration of 2% catalyst mole ratio of methanol-oil 6: 1. The density of biodieselproduced at the maximum yield was 880.90 kg / m3, kinematic viscosity of 4.59 mm2 / s, the flashpoint of 110oC, the water content of 0.048% v, and the acid number of 0.65 mg KOH / g, respectively in addition, analysis of the chemical compositions of biodiesel is used GC - MS. All the characteristics of the physical properties of biodiesel produced have met the standard range contained in the SNI 04-7182-2006.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pramushinta, Diah; Amraini, Said Zul; Chairul, Chairul;

    One of the alternatives is by utilizing bioethanol as a renewable alternative energy source. This study aims to obtain ethanol from pineapple feel using solid state fermentation process and the purification using distillation and adsorption process, obtain comparative data on the adsorption capacity of the natural zeolite without activation and the activated natural zeolite, to get data the optimum of adsorbent to produce bioethanol, and characterize the physical properties of bioethanol and qualitative test by GC-MS. The pore size of adsorbent variations are 60; 100; 200 mesh and variation of treatment of adsorbent the natural zeolite without activation and the activated natural. From the research is obtained the highest bioethanol concentration average is 10,44 % volume. The most effective process for ethanol purification is distillation and adsorption process by natural zeolite adsorbent without activation with pore size of 200 mesh. Ethanol content increased from 95 % to 99.8 % v. Bioethanol from distillation and adsorption process in accordance with ISO standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Walidah, Tafrikhatul; Chairul, Chairul; Amri, Amun;

    Indonesia has petroleum reserves about 9 billion barrels, which the average production rate is 0.5 billion barrels per year, and was predicted would be exhaust within 18 years. Government has ordered a program and policy to develop bioethanol and biodiesel for the energy crisis in Indonesia. It is targeted can be provide about 15-20% of the fuel for transportation and national industry in 2025. This research's goals were to produce fuel grade ethanol by distillation-adsorption method, determined the effect of activation temperature of bentonite and the effect ratio of bentonite to bioethanol. The raw materials were bioethanol from nypa sap (8% ethanol content). The ethanol concentration was not too high, so it needed to improve its purity by distillation-adsorption process. The research was held in three phases, which were distillation of nypa sap's bioethanol to 96% ethanol content, activation of bentonite, and distillation-adsorption using activated bentonite. Activation temperature of bentonite were 400oC, 500oC and the ratio of bentonite:bioethanol were 1:2; 1:3; and 1:4. The most effective process for the purification of bioethanol was distillation-adsorption at 500oC activated temperature and the ratio of bentonite:bioethanol was 1:2 with the purity is 99.5% and has been categorized as a fuel grade ethanol

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2015
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2015
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maulana, Firman; Syarfi, Syarfi; Zahrina, Ida;

    The cost of biodiesel production process is still a challenge, it needs to explore any raw material which is economically inexpensive and effective technologies to overcome the problem. CPO off grade is deemed economically potential to be processed into biodiesel because its inexpensive cost . Membrane reactor is an alternative technology that need to be developed to address this challenge . The research aimed to study the effect of oil to methanol mole ratio and transmembrane pressure on biodiesel production from CPO Off Grade . The study was conducted using two- step process , namely the process of esterification and transesterification process . Esterification process was carried out with variation of oil to methanol mole ratio of 1:12. The amount acid catalyst used is 2 % by weight of oil and reaction time of 2 hours . Transesterification process is carried out on membrane reactor with variation of oil to methanol mole ratio of 1:12 , 1:16 and 1:20 and transmembrane pressure of 1 bar , 1.5 bar , 2 bars and a catalyst concentration of 1 wt% base oil and process temperature of 60 º C. The results showed the highest conversion reached 80.14 % at the mole ratio of 1:20 and transmembrane pressure of 2 bar

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Joko Nursanto;

    Power Boats is a means of transportation in an environmentally friendly water using solar systems, which transform the energy of sunlight into electrical energy stored in the battery and later as an energy source to drive an electric boat engines. This electric boats as the development of renewable energy do not use fuel that is increasingly growing number of limited and expensive prices. Electric boats have a speed of 7 km / h and can operate for approximately 11.46 hours. The electric boats using solar panels solar Skytech SIM-100 wp, Trojan 31-GEL battery with a capacity of 102 Ah, Solar Charge Controller Shinyoku SC 990 (12V - 10A) engine powered boat Trolling Motor 0.50 pk made in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ismanto, Andi; Wicakssana, Bayu; Kurniawan, Hendi Okta; Wiranata, Muhammad Fendi;

    The process of exhausting long melon cultivation is one of the rarity factor farmers grow the The long and exhausting process in melon cultivation is one of factor the farmer rarity to grow up the fruit. The liquid fertilization is done once per 2/3 days. And the spraying can reach up to 23 time until the harvesting. Not maximum liquid fertilization will take longer time and more draining. Thats way, it needs a technology which can solve both these problems in one tool. This tool is called eco splash tank. This tank can also used in remote area without electricity because it is equipped by solar panels for energy source. the one wheel using for design makes the eco splash tank has capacity 30 L and strong. The result for a single full charge can be turned on and pump for 8 hrs. and the charging time for solar panels to accu until full is 9,5 hrs. in a pilot watering can be done up to 30 plants/minute and spray up to 27 plants/minute. It increases from 20 plants/minute(watering) and 17 plants/minute (spraying). In addition the functional benefits are felt by farmers. Because they don't need to hold, pump, and by the fuel. furthermore the design of eco splash tank will be developped for agricultural crops and then RAMP Technopreneurship, patent, and a list of 107 Innovation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.