Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,371 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 13. Climate action
  • 12. Responsible consumption
  • 3. Good health
  • Virginia Tech

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: James C. Hower; Mohammed Baalousha; Jiayuan Wu; Min Liu; +6 Authors

    Characterization of nanoparticles (NPs) in coal fly ashes (CFAs) is critical for better understanding the potential health-related risks resulting from coal combustion. Based on single-particle (SP)-inductively coupled plasma mass spectrometry (ICP-MS) coupled with transmission electron microscopy techniques, this study is the first to determine the concentrations and sizes of metal-containing NPs in low-rank coal-derived fly ashes. Despite only comprising a minor component of the studied CFAs by mass, NPs were the dominant fraction by particle number. Fe- and Ti-containing NPs were identified as the dominant NPs with their particle number concentration ranging from 2.5 × 107 to 2.5 × 108 particles/mg. In addition, the differences of Fe-/Ti-containing NPs in various CFAs were regulated by the coalification degree of feed coals and combustion conditions of all of the low-rank CFAs tested. In the cases where these NPs in CFAs become airborne and are inhaled, they can be taken up in pulmonary interstitial fluids. This study shows that in Gamble's solution (a lung fluid simulant), 51-87% of Fe and 63-89% of Ti (ratio of the mass of Fe-/Ti-containing NPs to the total mass of Fe/Ti) exist in the NP form and remain suspended in pulmonary fluid simulants. These NPs are bioavailable and may induce lung tissue damage.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lai, Yuhang;

    The last few decades have seen an explosion in population growth and along with this growth we have also witnessed an increase in demand for products. Although our resources are limited, consumers' needs know no bounds. It is not surprising that we are also increasingly demanding more from our environment. It is therefore imperative that we make better use of our resources and reassess how we construe a product's lifecycle. Instead of a linear perspective, which typically follows a product's lifecycle from mining of raw materials to manufacturing, but then stops when products are trashed, we need to use a circular perspective, where we focus on the entire lifecycle of products, from not just manufacturing to usage, but also from usage to creation of new products through recycling. The focus of this dissertation is on understanding two important processes in the circular economy: that of usage and disposal. I focus on the role that consumers' product valuations play in these processes. In essay 1, I show that consumers value products made from recycled materials more than comparable regular products. I also document why this happens and demonstrate how this affects usage. In essay 2, I investigate the relationship between reuse and product disposal. The circular economy is based on what is now referred to as the 3R approach: reduce, reuse, and recycle. However, I show that consumers are more (vs. less) likely to trash products that they have used extensively (vs. rarely). This then leads to a conundrum: if we encourage consumers to reuse products extensively, it appears that they are more likely to trash them. It is therefore imperative that we understand this relationship better and find interventions to mitigate this negative relationship. Doctor of Philosophy The last few decades have seen an explosion in population growth and along with this growth we have also witnessed an increase in demand for products. To create a more sustainable world, it is imperative that we move towards a more circular economy, where we not only minimize waste, but also find ways to extract more use from our resources. One way to do this is to find ways to reuse products after they have reached the end of their lifecycle. The focus of this dissertation is on understanding two important processes in the circular economy: that of usage and disposal (essentially addressing questions about what to do with products that we no longer have a need for). I primarily focus on the role that consumers' product valuations play in influencing these processes. In essay 1, I study how consumers feel about products made from recycled materials. I find that consumers are willing to pay more for products made from recycled materials compared with products made from regular raw materials. The higher willingness to pay emerges because consumers value the process that transforms the recycled materials into brand new products. I also show that this valuation impacts use: consumers use products made from recycled materials more judiciously. In essay 2, I investigate the relationship between product usage and disposal. I find that when consumers use a product more extensively, they are more likely to trash the product compared with other forms of reuse, such as, disposing in the recycling bin, giving it to others, or reselling it. This effect emerges because when consumers use a product more frequently, they believe that the product has less value remaining for others, and a product that confers lower value to others should be trashed.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2023
    License: CC BY NC
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2023
      License: CC BY NC
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lin, Weihan;

    The point absorber is one of the most popular types of ocean wave energy converter (WEC) that harvests energy from the ocean. Often such a WEC is deployed in an ocean location with tidal currents or ocean streams, or serves as a mobile platform to power the blue economy. The shape of the floating body, or buoy, of the point absorber type WEC is important for the wave energy capture ratio and for the current drag force. In this work, a new approach to optimize the shape of the point absorber buoy is developed to reduce the ocean current drag force on the buoy while capturing more energy from ocean waves. A specific parametric modeling is constructed to define the shape of the buoy with 12 parameters. The implementation of neural networks significantly reduces the computational time compared to solving hydrodynamics equations for each iteration. And the optimal shape of the buoy is solved using a genetic algorithm with multiple self-defined functions. The final optimal shape of the buoy in a case study reduces 68.7% of current drag force compared to a cylinder-shaped buoy, while maintaining the same level of energy capture ratio from ocean waves. The method presented in this work has the capability to define and optimize a complex buoy shape, and solve for a multi-objective optimization problem. Master of Science The marine kinetic energy includes ocean waves power, tidal power, ocean current power, ocean thermal power and river power. The total potential marine kinetic energy in 2021 is 2300 TWh/year, where 1400 TWh/year is from the ocean wave power. To discover and harvest the huge potential power from the marine, researchers have been developed for different types of WECs for several decades. One of the most successful concepts is the point absorber typed WEC, which can extract waver energy from the heaving vibration motion of a floating body and convert the kinetic energy into electrical energy. This thesis presents an optimization strategy to optimize the shape of the floating body to improve power extraction and reduce the installation cost by implementing the machine learning tool and genetic algorithm. Compared with the state-of-the-art optimization strategies, the proposed optimization method allows the floating body to have more parameters in shape changes and reduces the computational cost from minutes to milliseconds. The final optimized floating body shape performs extraordinarily compared to the other two state-of-the-art floating body shapes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2023
    License: CC BY
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2023
      License: CC BY
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Patel, Jaitun Vijaybhai;

    Spanning 14 states in the northeast United States, the Appalachian Trail (AT) is a popular destination for outdoor recreation, with thousands of individuals attempting to thru-hike the AT every year. For its scenic views and accessibility from the cities, the AT is experiencing a record number of visitors raising concerns about the sustainability of the trail. Many trail organizations manage the AT to reduce the visitor impact on the outdoors. In this research, I study the role of information and communication technologies in promoting collaboration between these trail agencies and visitors. I identify the need for a formal communication channel between the stakeholders by examining the existing information-sharing practices of hikers and trail managers through social media analysis, interviews, and a design workshop. I present the design of an online discussion platform, the SmarTrail board, and conduct a field usability study with two AT trail clubs to evaluate the platform. Findings from the study reveal that centralized direct communication and streamlined information can support trail management on the AT by promoting collaboration within the trail community. The research paves the path for future research into the design of ICTs for driving nature conservation goals. Master of Science The Appalachian Trail (AT) in the northeast of the United States spreads across 14 states. It is accessible from many regional urban centers, offering recreational opportunities to thousands of individuals every year. It is also a popular site for thru-hiking, an endeavor to hike the trail from end to end in a year. Such popularity and accessibility to the trail put pressure on the natural resources, raising concerns about the sustainability of the trail. Management of the trail deals with minimizing the resource impact while preserving the trail experiences of the visitors. Thirty trail clubs maintain separate sections of the AT, and a number of trail organizations work together to manage the trail. The core of this management relies on the collaboration of these trail agencies with each other and the visitors. As communication is central to collaborations in everyday life and for the trail, I explore the practices and possibilities for information sharing and communication on the AT. Digital conservation refers to the technological developments that support and forward nature conservation goals. As the pristine environment of the trails and the AT are not barred from the reach of digital technology, the prevalence of smartphones among visitors presents opportunities for information and communication technologies (ICTs) to support the digital conservation of the trail. In this research, I study digital technology use among hikers and trail managers on the AT, particularly for information sharing. By analyzing comments on Reddit, conducting interviews with the AT trail managers, and organizing a workshop with long-distance hikers, I highlight the need for direct communication between these stakeholders. I present the design of an online discussion board called the SmarTrail platform as a formal communication channel between hikers and trail managers and evaluate it with two trail clubs on the AT. The results from the evaluation offer several use cases of mediated communication, highlighting its need and potential in supporting trail management on the AT. Centralized and formal communication can lead to effective trail management by engaging visitors in trail management, improving volunteer management for the clubs, and enabling knowledge sharing and coordination between the trail agencies. With design considerations for improving human-nature interaction and simplifying the available information for visitors and trail management authorities, this study informs the design of ICTs for trail environments that would forward the digital conservation goals on the AT.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2023
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2023
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniele Cecconet; Shiqiang Zou; Andrea G. Capodaglio; Zhen He;

    Nitrate contamination of groundwater is a mounting concern for drinking water production due to its healthy and ecological effects. Bioelectrochemical systems (BES) are a promising method for energy efficient nitrate removal, but its energy consumption has not been well understood. Herein, we conducted a preliminary analysis of energy consumption based on both literature information and multiple assumptions. Four scenarios were created for the purpose of analysis based on two treatment approaches, microbial fuel cells (MFCs) and controlled biocathodic denitrification (CBD), under either in situ or ex situ deployment. The results show a specific energy consumption based on the mass of NO3--N removed (SECN) of 0.341 and 1.602 kWh kg NO3--N-1 obtained from in situ and ex situ treatments with MFCs, respectively; the main contributor was the extraction of the anolyte (100%) in the former and pumping the groundwater (74.8%) for the latter. In the case of CBD treatment, the energy consumption by power supply outcompeted all the other energy items (over 85% in all cases), and a total SECN of 19.028 and 10.003 kWh kg NO3--N-1 were obtained for in situ and ex situ treatments, respectively. The increase in the water table depth (from 10 to 30 m) and the decrease of the nitrate concentration (from 25 to 15 mg NO3--N) would lead to a rise in energy consumption in the ex situ treatment. Although some data might be premature due to the lack of sufficient information in available literature, the results could provide an initial picture of energy consumption by BES-based groundwater treatment and encourage further thinking and analysis of energy consumption (and production).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ashford, Nicholas A.; Hall, R.P.;

    Abstract Strategic niche management and transition management have been promoted as useful avenues to pursue in order to achieve both specific product or process changes and system transformation by focusing on technology development through evolutionary and co-evolutionary processes, guided by government and relevant stakeholders. However, these processes are acknowledged to require decades to achieve their intended changes, a timeframe that is too long to adequately address many of the environmental and social issues many industrialized and industrializing nations are facing. An approach that involves incumbents and does not consider targets that look beyond reasonably foreseeable technology is likely to advance a model where incumbents evolve rather than being replaced or displaced. On the other hand, approaches that focus on creating new entrants could nurture niche development or deployment of disruptive technologies, but those technologies may only be marginally better than the technologies they replace. Either approach may take a long time to achieve their goals. Sustainable development requires both radical disruptive technological and institutional changes, the latter including stringent regulation, the integration of disparate goals, and changes in incentives to enable new voices to contribute to new systems and solutions. This paper outlines options for a strong governmental role in setting future sustainability goals and the pathways for achieving them.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecological Economics
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecological Economics
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Span, Kati A.;

    The objectives of this 8-week study were to assess the amount (weight) of pre-consumer (production) food waste at a large university, serving 18,000 meal plan holders, and identify major contributors of food waste (i.e. food categories, types of waste). Dining facility managers and waste coordinators (WCs) were voluntarily recruited from three dining facilities to oversee all food waste data collection and entry by dining staff, and attend weekly meetings with the research team. Food waste was weighed by staff at the designated facilities using institutional food scales. Information about the food waste was then written on tracking sheets and entered into an online database. The tracking sheet and database contained information on: product description (i.e. food type), reason for waste, weight of food (lbs), disposal method (compost/food scraps, diverted, or trash), and any related comments. Waste analysis included aggregating weekly data by total waste (lbs), facility, food type, food groups of MyPlate, and reason for food waste. Quantitative results from this study reveal that thousands of pounds of food waste are disposed of each week, especially for proteins and grains. Results derived from qualitative interviews and focus groups indicated that waste tracking is beneficial for staff buy-in, creating waste standards to improve efficiency, and adjusting food production schedules. Implications from these results indicate ability to help guide policy and practice, and provide insight into major contributors of institutional food waste. Master of Science

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2012
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2012
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jacob H Wynne; Whitney M Woelmer; Tadhg N Moore; R Quinn Thomas; +2 Authors

    Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Article . 2023
    License: CC BY
    Data sources: VTechWorks
    https://doi.org/10.1002/essoar...
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    https://doi.org/10.1002/essoar...
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Article . 2023
      License: CC BY
      Data sources: VTechWorks
      https://doi.org/10.1002/essoar...
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      https://doi.org/10.1002/essoar...
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Waters, Crystal Kenee;

    Ni-rich layered oxide materials have gained significant attention due to the ongoing advances and demands in energy storage. The energy revolution continues to catapult the need for improved battery materials, especially for applications in portable electronic devices and electric vehicles. Lithium batteries are at the frontier of energy storage. Due to geopolitical concerns, there is a growing need to understand the chemistries of Co-free, Ni-rich layered oxide materials which are cost-efficient and possess increased practical capacity. The challenge to studying this class of materials is their inherent electronic and structural fragility. The fragility of these materials is facilitated by a cooperation of metal cation migration, lattice oxygen loss, and undesirable oxide cathode-electrolyte interfacial reactions. Each of these phenomena contribute to complex electrolyte decomposition pathways and oxide cathode structural distortions. Structural instability leads to poor battery performance metrics including specific capacity fading and decreased Coulombic efficiency. Electrolyte decomposition occurs at the oxide cathode surface, but it can lead to bulk electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations in the material. The work in this dissertation focuses on understanding some of the chemistries associated with degradation of representative Ni-rich layered oxides, specifically LiNiO2 (LNO) and LiNixMnyCozO2 (NMC) (where x+y+z =1) materials. Chapter 1 provides a comprehensive review of the interfacial chemistries of fragile, Ni-rich layered oxide materials with carbonate-based liquid electrolytes. These reactions are key in deducing mechanistic pathways that promote thermal runaway. Uncontrollable oxygen loss and electrolyte oxidation leads to catastrophic battery fires and explosions. The chapter highlights the material properties that become perturbed during high states-of-charge which complicate the materials chemistry associated with Ni-rich layered oxides. Lastly, a few strategies to mitigate undesired, structurally detrimental reactions at the Ni-rich layered oxide cathode surface are provided in Chapter 1. To obtain the technical data detailed in this dissertation, a variety of analytical methods are employed. Chapter 2 introduces the working principles of the X-ray techniques, electron microscopy, and other quantification methods. X-ray techniques including synchrotron X-ray absorption spectroscopy (XAS), and its components XANES and EXAFS are discussed. Other X-ray techniques, including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are additionally included. Electron microscopy techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) are provided. Quantification methods, such as gas chromatography – flame ionization detection (GC-FID) and other electrochemical testing methods are also described. Detailed experimental information obtained using the analytical methods is provided in the technical chapters. In understanding the chemistry of Ni-rich layered oxides, exploring surface reconstruction is key. Surface reconstruction, a phenomenon caused by a collaboration between Li/Ni cation intermixing and lattice oxygen loss, is one of the major explanations for structural degradation in Ni-rich layered oxide materials. Chapter 3 explores surface reconstruction and deduces a mechanism by which lattice oxygen is loss in LiNi0.6Mn0.2Co0.2O2 (NMC622). By exploiting Li+ intercalation chemistry, the work emulates various states-of-charge to explore how delithiation impacts small, organic molecule oxidation. Benzyl alcohol serves as a good probing molecule. It is similar to an oxidizable, nonaqueous electrolytic species that undergoes oxidation at the oxide cathode surface. Structure-reactivity trends are defined to correlate electronic and structural changes, lattice oxygen loss, and small molecule oxidation. After studying a proxy molecule, a practical system is required to grasp the complexity of the cathode-electrolyte interfacial reactions that promote Ni-rich layered oxide degradation. In Chapter 4, an electrolyte stirring experiment is described. Stirring experiments provide an accelerated testing method which helps to deduce the influences of chemical electrolyte decomposition on structural degradation of LiNiO2 (LNO). X-ray techniques are used to illustrate electronic perturbations and structural distortions in the material after probing with EC/DMC w/w 3:7 LiPF6. Additionally, this dissertation chapter features a novel voltage oscillation experiment that is employed to quantify Ni-rich oxide cathode degradation at the phase transition regions. LNO has three charging plateaus – H1 ïƒ M, M ïƒ H2, and H2 ïƒ H3. The latter two plateaus have been largely associated with irreversible structural fragility in Ni-rich layered oxides. Cation intermixing and oxygen loss are two phenomena that are largely associated with decreased Li+ intercalation kinetics and increased undesired side reactions. Although researchers debate the chemical phenomenon that occur at each of the phase transitions, most agree that the H2 ïƒ H3 transition is highly influenced by irreversible lattice oxygen loss. This dissertation chapter describes the studies used to explore the electronic changes and structural distortions that accompany the voltage oscillation electrochemical testing. While Ni-rich layered oxides are largely employed as lithium battery cathodes, this class of material is unique in that it is a reducible and electronically tunable. Electronically modifiable metal oxide materials provide a unique platform to lend information to other applications, such as catalysis. There is much debate surrounding the role of metal oxides on metal nanocatalyst performance for catalytically reductive pathways. Chapter 5 discusses the method of employing LiNiO2 and other NMC materials as electronically tunable metal oxides to determine the role of the reducible metal oxide support on the gold (Au) nanocatalyst for p-nitrophenol reduction to p-aminophenol. By obtaining a continuum of nickel (Ni) oxidation states using delithiation strategies, structural-activity relationship trends are provided. Conversion rates for each of the delithiated materials was calculated using pseudo first-order kinetics. Lastly, a detailed discussion on metal oxide reducibility and its influences on key mechanistic factors, such as the induction period is included. Chapter 6 in this dissertation provides conclusions for the technical work provided. It bridges the works together and describes the overarching findings associated with the chemistries of Ni-rich layered oxide materials. This dissertation lays the foundation for future experimentation and innovation in understanding the surface chemistry of Ni-rich layered oxides. Chapter 7 provides future perspectives for each of the technical works included herein. Additionally, the final chapter includes insights toward the future of lithium batteries and other cathode chemistries. As the world navigates the energy revolution, it is important to provide global perspectives expected to catapult a sustainable future with batteries towards a greener world. Doctor of Philosophy Rechargeable lithium batteries have gained a significant surge of interest due to the ongoing demands for portable electronic devices, as well as the global trend towards electric vehicles to decrease the carbon footprint. Lithium batteries reside at the pinnacle of the energy transition. Layered oxide materials are typically employed as the cathode in Li-ion batteries. Ni-rich layered oxides have gained much interest due to their low cost and good charge/discharge capabilities. As consumers want increased charging rates and longer lifetimes, researchers struggle to optimize the balance between incorporating Ni-rich cathodes and increased safety concerns caused by cathode structural fragility. The lack of structural robustness is largely due to the surface reactivity of Ni-rich layered oxide materials. Bonding arrangements and electron transfer pathways intrinsic to this class of material increases the complexity in understanding the surface chemistry and the associated degradation pathways. Oxygen loss is the major cause of the safety issues in lithium batteries such as battery fires and explosions. To mitigate the safety concerns, it is imperative to understand the chemistries that promote organic, liquid electrolyte decomposition, electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations. Each of these components leads to decreased battery performance. The work in this dissertation describes model and practical platforms to probe and understand the chemistries associated with battery performance degradation. A variety of analytical methods were utilized to determine overall structure-activity relationship trends and are highlighted in Chapter 2. Chapters 3-5 is technical research providing insight on Ni-rich layered oxide degradation pathways and behaviors. The work advances the understanding of battery surface chemistry which will lead to improved cathode design. As batteries continue to grow, it is important to know other applications that benefit from the unique chemistry of Ni-rich layered oxide materials. By exploiting the lithium battery cathode chemistry, this dissertation highlights a method to utilize these materials to understand the role of metal oxides on Au nanocatalysts. Conclusions to the findings in this dissertation are provided in Chapter 6. Future perspectives on the technical research provided herein this dissertation is included in Chapter 7. Additionally, Chapter 7 details future perspectives for lithium batteries and how they can facilitate the global transition toward a sustainable future.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2021
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2021
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ogutu, Z. A.;

    AbstractThis paper presents the impact of ecotourism on livelihood and natural resource management in the periphery of Amboseli Biosphere Reserve in Kenya. Ecotourism initiatives that have been introduced by Porini Ecotourism, a private investor, are benefiting Eselenkei Group Ranch in terms of income, improved infrastructure, employment opportunities and exposure. Over US$5000 is received annually as land rent, gate fee and bed charges. Twenty‐six Maasai men are employed for the upkeep of project facilities. The community's capacity to facilitate resource‐related conflicts has improved following support from development institutions. An expanding livelihood base is reducing local vulnerability to disaster and people–wildlife conflicts. The numbers of resident wildlife species in the conservation area have increased due to regeneration of woody species and reduced frequency of livestock.Despite the achievements, ecotourism is threatened by cultivation. The latter is jeopardizing conservation efforts, as the area frequented by wildlife is being lost and people–wildlife conflicts intensified. Another dilemma is that the Eselenkei community is not effectively participating in ecotourism a situation that is associated with inadequate management and negotiation skills in the group ranch committee. The latter requires leadership and microenterprise management skills if earnings from ecotourism are to be effectively invested in alternative sources of livelihood, to reduce current and potential conflicts. There is also need to build the community's capacity for the promotion of activities that compliment ecotourism. Frequent breakdown of community boreholes lead to dependence on the conservation area for water during prolonged drought, intensifying conflicts between livestock and wildlife. Referring to low‐impact nature‐based tourism packages that benefit local communities and the national government while helping to conserve the resource base (Kenya Wildlife Service (KWS), unpublished report, 2001). Copyright © 2002 John Wiley & Sons, Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Land Degradation and...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Other literature type . 2002
    Data sources: VTechWorks
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Land Degradation and Development
    Article . 2002 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Land Degradation and...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Other literature type . 2002
      Data sources: VTechWorks
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Land Degradation and Development
      Article . 2002 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,371 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: James C. Hower; Mohammed Baalousha; Jiayuan Wu; Min Liu; +6 Authors

    Characterization of nanoparticles (NPs) in coal fly ashes (CFAs) is critical for better understanding the potential health-related risks resulting from coal combustion. Based on single-particle (SP)-inductively coupled plasma mass spectrometry (ICP-MS) coupled with transmission electron microscopy techniques, this study is the first to determine the concentrations and sizes of metal-containing NPs in low-rank coal-derived fly ashes. Despite only comprising a minor component of the studied CFAs by mass, NPs were the dominant fraction by particle number. Fe- and Ti-containing NPs were identified as the dominant NPs with their particle number concentration ranging from 2.5 × 107 to 2.5 × 108 particles/mg. In addition, the differences of Fe-/Ti-containing NPs in various CFAs were regulated by the coalification degree of feed coals and combustion conditions of all of the low-rank CFAs tested. In the cases where these NPs in CFAs become airborne and are inhaled, they can be taken up in pulmonary interstitial fluids. This study shows that in Gamble's solution (a lung fluid simulant), 51-87% of Fe and 63-89% of Ti (ratio of the mass of Fe-/Ti-containing NPs to the total mass of Fe/Ti) exist in the NP form and remain suspended in pulmonary fluid simulants. These NPs are bioavailable and may induce lung tissue damage.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science & Technology
    Article . 2021 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lai, Yuhang;

    The last few decades have seen an explosion in population growth and along with this growth we have also witnessed an increase in demand for products. Although our resources are limited, consumers' needs know no bounds. It is not surprising that we are also increasingly demanding more from our environment. It is therefore imperative that we make better use of our resources and reassess how we construe a product's lifecycle. Instead of a linear perspective, which typically follows a product's lifecycle from mining of raw materials to manufacturing, but then stops when products are trashed, we need to use a circular perspective, where we focus on the entire lifecycle of products, from not just manufacturing to usage, but also from usage to creation of new products through recycling. The focus of this dissertation is on understanding two important processes in the circular economy: that of usage and disposal. I focus on the role that consumers' product valuations play in these processes. In essay 1, I show that consumers value products made from recycled materials more than comparable regular products. I also document why this happens and demonstrate how this affects usage. In essay 2, I investigate the relationship between reuse and product disposal. The circular economy is based on what is now referred to as the 3R approach: reduce, reuse, and recycle. However, I show that consumers are more (vs. less) likely to trash products that they have used extensively (vs. rarely). This then leads to a conundrum: if we encourage consumers to reuse products extensively, it appears that they are more likely to trash them. It is therefore imperative that we understand this relationship better and find interventions to mitigate this negative relationship. Doctor of Philosophy The last few decades have seen an explosion in population growth and along with this growth we have also witnessed an increase in demand for products. To create a more sustainable world, it is imperative that we move towards a more circular economy, where we not only minimize waste, but also find ways to extract more use from our resources. One way to do this is to find ways to reuse products after they have reached the end of their lifecycle. The focus of this dissertation is on understanding two important processes in the circular economy: that of usage and disposal (essentially addressing questions about what to do with products that we no longer have a need for). I primarily focus on the role that consumers' product valuations play in influencing these processes. In essay 1, I study how consumers feel about products made from recycled materials. I find that consumers are willing to pay more for products made from recycled materials compared with products made from regular raw materials. The higher willingness to pay emerges because consumers value the process that transforms the recycled materials into brand new products. I also show that this valuation impacts use: consumers use products made from recycled materials more judiciously. In essay 2, I investigate the relationship between product usage and disposal. I find that when consumers use a product more extensively, they are more likely to trash the product compared with other forms of reuse, such as, disposing in the recycling bin, giving it to others, or reselling it. This effect emerges because when consumers use a product more frequently, they believe that the product has less value remaining for others, and a product that confers lower value to others should be trashed.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2023
    License: CC BY NC
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2023
      License: CC BY NC
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lin, Weihan;

    The point absorber is one of the most popular types of ocean wave energy converter (WEC) that harvests energy from the ocean. Often such a WEC is deployed in an ocean location with tidal currents or ocean streams, or serves as a mobile platform to power the blue economy. The shape of the floating body, or buoy, of the point absorber type WEC is important for the wave energy capture ratio and for the current drag force. In this work, a new approach to optimize the shape of the point absorber buoy is developed to reduce the ocean current drag force on the buoy while capturing more energy from ocean waves. A specific parametric modeling is constructed to define the shape of the buoy with 12 parameters. The implementation of neural networks significantly reduces the computational time compared to solving hydrodynamics equations for each iteration. And the optimal shape of the buoy is solved using a genetic algorithm with multiple self-defined functions. The final optimal shape of the buoy in a case study reduces 68.7% of current drag force compared to a cylinder-shaped buoy, while maintaining the same level of energy capture ratio from ocean waves. The method presented in this work has the capability to define and optimize a complex buoy shape, and solve for a multi-objective optimization problem. Master of Science The marine kinetic energy includes ocean waves power, tidal power, ocean current power, ocean thermal power and river power. The total potential marine kinetic energy in 2021 is 2300 TWh/year, where 1400 TWh/year is from the ocean wave power. To discover and harvest the huge potential power from the marine, researchers have been developed for different types of WECs for several decades. One of the most successful concepts is the point absorber typed WEC, which can extract waver energy from the heaving vibration motion of a floating body and convert the kinetic energy into electrical energy. This thesis presents an optimization strategy to optimize the shape of the floating body to improve power extraction and reduce the installation cost by implementing the machine learning tool and genetic algorithm. Compared with the state-of-the-art optimization strategies, the proposed optimization method allows the floating body to have more parameters in shape changes and reduces the computational cost from minutes to milliseconds. The final optimized floating body shape performs extraordinarily compared to the other two state-of-the-art floating body shapes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2023
    License: CC BY
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2023
      License: CC BY
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Patel, Jaitun Vijaybhai;

    Spanning 14 states in the northeast United States, the Appalachian Trail (AT) is a popular destination for outdoor recreation, with thousands of individuals attempting to thru-hike the AT every year. For its scenic views and accessibility from the cities, the AT is experiencing a record number of visitors raising concerns about the sustainability of the trail. Many trail organizations manage the AT to reduce the visitor impact on the outdoors. In this research, I study the role of information and communication technologies in promoting collaboration between these trail agencies and visitors. I identify the need for a formal communication channel between the stakeholders by examining the existing information-sharing practices of hikers and trail managers through social media analysis, interviews, and a design workshop. I present the design of an online discussion platform, the SmarTrail board, and conduct a field usability study with two AT trail clubs to evaluate the platform. Findings from the study reveal that centralized direct communication and streamlined information can support trail management on the AT by promoting collaboration within the trail community. The research paves the path for future research into the design of ICTs for driving nature conservation goals. Master of Science The Appalachian Trail (AT) in the northeast of the United States spreads across 14 states. It is accessible from many regional urban centers, offering recreational opportunities to thousands of individuals every year. It is also a popular site for thru-hiking, an endeavor to hike the trail from end to end in a year. Such popularity and accessibility to the trail put pressure on the natural resources, raising concerns about the sustainability of the trail. Management of the trail deals with minimizing the resource impact while preserving the trail experiences of the visitors. Thirty trail clubs maintain separate sections of the AT, and a number of trail organizations work together to manage the trail. The core of this management relies on the collaboration of these trail agencies with each other and the visitors. As communication is central to collaborations in everyday life and for the trail, I explore the practices and possibilities for information sharing and communication on the AT. Digital conservation refers to the technological developments that support and forward nature conservation goals. As the pristine environment of the trails and the AT are not barred from the reach of digital technology, the prevalence of smartphones among visitors presents opportunities for information and communication technologies (ICTs) to support the digital conservation of the trail. In this research, I study digital technology use among hikers and trail managers on the AT, particularly for information sharing. By analyzing comments on Reddit, conducting interviews with the AT trail managers, and organizing a workshop with long-distance hikers, I highlight the need for direct communication between these stakeholders. I present the design of an online discussion board called the SmarTrail platform as a formal communication channel between hikers and trail managers and evaluate it with two trail clubs on the AT. The results from the evaluation offer several use cases of mediated communication, highlighting its need and potential in supporting trail management on the AT. Centralized and formal communication can lead to effective trail management by engaging visitors in trail management, improving volunteer management for the clubs, and enabling knowledge sharing and coordination between the trail agencies. With design considerations for improving human-nature interaction and simplifying the available information for visitors and trail management authorities, this study informs the design of ICTs for trail environments that would forward the digital conservation goals on the AT.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2023
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2023
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Daniele Cecconet; Shiqiang Zou; Andrea G. Capodaglio; Zhen He;

    Nitrate contamination of groundwater is a mounting concern for drinking water production due to its healthy and ecological effects. Bioelectrochemical systems (BES) are a promising method for energy efficient nitrate removal, but its energy consumption has not been well understood. Herein, we conducted a preliminary analysis of energy consumption based on both literature information and multiple assumptions. Four scenarios were created for the purpose of analysis based on two treatment approaches, microbial fuel cells (MFCs) and controlled biocathodic denitrification (CBD), under either in situ or ex situ deployment. The results show a specific energy consumption based on the mass of NO3--N removed (SECN) of 0.341 and 1.602 kWh kg NO3--N-1 obtained from in situ and ex situ treatments with MFCs, respectively; the main contributor was the extraction of the anolyte (100%) in the former and pumping the groundwater (74.8%) for the latter. In the case of CBD treatment, the energy consumption by power supply outcompeted all the other energy items (over 85% in all cases), and a total SECN of 19.028 and 10.003 kWh kg NO3--N-1 were obtained for in situ and ex situ treatments, respectively. The increase in the water table depth (from 10 to 30 m) and the decrease of the nitrate concentration (from 25 to 15 mg NO3--N) would lead to a rise in energy consumption in the ex situ treatment. Although some data might be premature due to the lack of sufficient information in available literature, the results could provide an initial picture of energy consumption by BES-based groundwater treatment and encourage further thinking and analysis of energy consumption (and production).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ashford, Nicholas A.; Hall, R.P.;

    Abstract Strategic niche management and transition management have been promoted as useful avenues to pursue in order to achieve both specific product or process changes and system transformation by focusing on technology development through evolutionary and co-evolutionary processes, guided by government and relevant stakeholders. However, these processes are acknowledged to require decades to achieve their intended changes, a timeframe that is too long to adequately address many of the environmental and social issues many industrialized and industrializing nations are facing. An approach that involves incumbents and does not consider targets that look beyond reasonably foreseeable technology is likely to advance a model where incumbents evolve rather than being replaced or displaced. On the other hand, approaches that focus on creating new entrants could nurture niche development or deployment of disruptive technologies, but those technologies may only be marginally better than the technologies they replace. Either approach may take a long time to achieve their goals. Sustainable development requires both radical disruptive technological and institutional changes, the latter including stringent regulation, the integration of disparate goals, and changes in incentives to enable new voices to contribute to new systems and solutions. This paper outlines options for a strong governmental role in setting future sustainability goals and the pathways for achieving them.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecological Economics
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DSpace@MIT (Massachu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecological Economics
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Span, Kati A.;

    The objectives of this 8-week study were to assess the amount (weight) of pre-consumer (production) food waste at a large university, serving 18,000 meal plan holders, and identify major contributors of food waste (i.e. food categories, types of waste). Dining facility managers and waste coordinators (WCs) were voluntarily recruited from three dining facilities to oversee all food waste data collection and entry by dining staff, and attend weekly meetings with the research team. Food waste was weighed by staff at the designated facilities using institutional food scales. Information about the food waste was then written on tracking sheets and entered into an online database. The tracking sheet and database contained information on: product description (i.e. food type), reason for waste, weight of food (lbs), disposal method (compost/food scraps, diverted, or trash), and any related comments. Waste analysis included aggregating weekly data by total waste (lbs), facility, food type, food groups of MyPlate, and reason for food waste. Quantitative results from this study reveal that thousands of pounds of food waste are disposed of each week, especially for proteins and grains. Results derived from qualitative interviews and focus groups indicated that waste tracking is beneficial for staff buy-in, creating waste standards to improve efficiency, and adjusting food production schedules. Implications from these results indicate ability to help guide policy and practice, and provide insight into major contributors of institutional food waste. Master of Science

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2012
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2012
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jacob H Wynne; Whitney M Woelmer; Tadhg N Moore; R Quinn Thomas; +2 Authors

    Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PeerJ
    Article . 2023
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Article . 2023
    License: CC BY
    Data sources: VTechWorks
    https://doi.org/10.1002/essoar...
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    https://doi.org/10.1002/essoar...
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PeerJ
      Article . 2023
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Article . 2023
      License: CC BY
      Data sources: VTechWorks
      https://doi.org/10.1002/essoar...
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      https://doi.org/10.1002/essoar...
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Waters, Crystal Kenee;

    Ni-rich layered oxide materials have gained significant attention due to the ongoing advances and demands in energy storage. The energy revolution continues to catapult the need for improved battery materials, especially for applications in portable electronic devices and electric vehicles. Lithium batteries are at the frontier of energy storage. Due to geopolitical concerns, there is a growing need to understand the chemistries of Co-free, Ni-rich layered oxide materials which are cost-efficient and possess increased practical capacity. The challenge to studying this class of materials is their inherent electronic and structural fragility. The fragility of these materials is facilitated by a cooperation of metal cation migration, lattice oxygen loss, and undesirable oxide cathode-electrolyte interfacial reactions. Each of these phenomena contribute to complex electrolyte decomposition pathways and oxide cathode structural distortions. Structural instability leads to poor battery performance metrics including specific capacity fading and decreased Coulombic efficiency. Electrolyte decomposition occurs at the oxide cathode surface, but it can lead to bulk electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations in the material. The work in this dissertation focuses on understanding some of the chemistries associated with degradation of representative Ni-rich layered oxides, specifically LiNiO2 (LNO) and LiNixMnyCozO2 (NMC) (where x+y+z =1) materials. Chapter 1 provides a comprehensive review of the interfacial chemistries of fragile, Ni-rich layered oxide materials with carbonate-based liquid electrolytes. These reactions are key in deducing mechanistic pathways that promote thermal runaway. Uncontrollable oxygen loss and electrolyte oxidation leads to catastrophic battery fires and explosions. The chapter highlights the material properties that become perturbed during high states-of-charge which complicate the materials chemistry associated with Ni-rich layered oxides. Lastly, a few strategies to mitigate undesired, structurally detrimental reactions at the Ni-rich layered oxide cathode surface are provided in Chapter 1. To obtain the technical data detailed in this dissertation, a variety of analytical methods are employed. Chapter 2 introduces the working principles of the X-ray techniques, electron microscopy, and other quantification methods. X-ray techniques including synchrotron X-ray absorption spectroscopy (XAS), and its components XANES and EXAFS are discussed. Other X-ray techniques, including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are additionally included. Electron microscopy techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) are provided. Quantification methods, such as gas chromatography – flame ionization detection (GC-FID) and other electrochemical testing methods are also described. Detailed experimental information obtained using the analytical methods is provided in the technical chapters. In understanding the chemistry of Ni-rich layered oxides, exploring surface reconstruction is key. Surface reconstruction, a phenomenon caused by a collaboration between Li/Ni cation intermixing and lattice oxygen loss, is one of the major explanations for structural degradation in Ni-rich layered oxide materials. Chapter 3 explores surface reconstruction and deduces a mechanism by which lattice oxygen is loss in LiNi0.6Mn0.2Co0.2O2 (NMC622). By exploiting Li+ intercalation chemistry, the work emulates various states-of-charge to explore how delithiation impacts small, organic molecule oxidation. Benzyl alcohol serves as a good probing molecule. It is similar to an oxidizable, nonaqueous electrolytic species that undergoes oxidation at the oxide cathode surface. Structure-reactivity trends are defined to correlate electronic and structural changes, lattice oxygen loss, and small molecule oxidation. After studying a proxy molecule, a practical system is required to grasp the complexity of the cathode-electrolyte interfacial reactions that promote Ni-rich layered oxide degradation. In Chapter 4, an electrolyte stirring experiment is described. Stirring experiments provide an accelerated testing method which helps to deduce the influences of chemical electrolyte decomposition on structural degradation of LiNiO2 (LNO). X-ray techniques are used to illustrate electronic perturbations and structural distortions in the material after probing with EC/DMC w/w 3:7 LiPF6. Additionally, this dissertation chapter features a novel voltage oscillation experiment that is employed to quantify Ni-rich oxide cathode degradation at the phase transition regions. LNO has three charging plateaus – H1 ïƒ M, M ïƒ H2, and H2 ïƒ H3. The latter two plateaus have been largely associated with irreversible structural fragility in Ni-rich layered oxides. Cation intermixing and oxygen loss are two phenomena that are largely associated with decreased Li+ intercalation kinetics and increased undesired side reactions. Although researchers debate the chemical phenomenon that occur at each of the phase transitions, most agree that the H2 ïƒ H3 transition is highly influenced by irreversible lattice oxygen loss. This dissertation chapter describes the studies used to explore the electronic changes and structural distortions that accompany the voltage oscillation electrochemical testing. While Ni-rich layered oxides are largely employed as lithium battery cathodes, this class of material is unique in that it is a reducible and electronically tunable. Electronically modifiable metal oxide materials provide a unique platform to lend information to other applications, such as catalysis. There is much debate surrounding the role of metal oxides on metal nanocatalyst performance for catalytically reductive pathways. Chapter 5 discusses the method of employing LiNiO2 and other NMC materials as electronically tunable metal oxides to determine the role of the reducible metal oxide support on the gold (Au) nanocatalyst for p-nitrophenol reduction to p-aminophenol. By obtaining a continuum of nickel (Ni) oxidation states using delithiation strategies, structural-activity relationship trends are provided. Conversion rates for each of the delithiated materials was calculated using pseudo first-order kinetics. Lastly, a detailed discussion on metal oxide reducibility and its influences on key mechanistic factors, such as the induction period is included. Chapter 6 in this dissertation provides conclusions for the technical work provided. It bridges the works together and describes the overarching findings associated with the chemistries of Ni-rich layered oxide materials. This dissertation lays the foundation for future experimentation and innovation in understanding the surface chemistry of Ni-rich layered oxides. Chapter 7 provides future perspectives for each of the technical works included herein. Additionally, the final chapter includes insights toward the future of lithium batteries and other cathode chemistries. As the world navigates the energy revolution, it is important to provide global perspectives expected to catapult a sustainable future with batteries towards a greener world. Doctor of Philosophy Rechargeable lithium batteries have gained a significant surge of interest due to the ongoing demands for portable electronic devices, as well as the global trend towards electric vehicles to decrease the carbon footprint. Lithium batteries reside at the pinnacle of the energy transition. Layered oxide materials are typically employed as the cathode in Li-ion batteries. Ni-rich layered oxides have gained much interest due to their low cost and good charge/discharge capabilities. As consumers want increased charging rates and longer lifetimes, researchers struggle to optimize the balance between incorporating Ni-rich cathodes and increased safety concerns caused by cathode structural fragility. The lack of structural robustness is largely due to the surface reactivity of Ni-rich layered oxide materials. Bonding arrangements and electron transfer pathways intrinsic to this class of material increases the complexity in understanding the surface chemistry and the associated degradation pathways. Oxygen loss is the major cause of the safety issues in lithium batteries such as battery fires and explosions. To mitigate the safety concerns, it is imperative to understand the chemistries that promote organic, liquid electrolyte decomposition, electronic and structural changes, chemomechanical breakdown, and irreversible phase transformations. Each of these components leads to decreased battery performance. The work in this dissertation describes model and practical platforms to probe and understand the chemistries associated with battery performance degradation. A variety of analytical methods were utilized to determine overall structure-activity relationship trends and are highlighted in Chapter 2. Chapters 3-5 is technical research providing insight on Ni-rich layered oxide degradation pathways and behaviors. The work advances the understanding of battery surface chemistry which will lead to improved cathode design. As batteries continue to grow, it is important to know other applications that benefit from the unique chemistry of Ni-rich layered oxide materials. By exploiting the lithium battery cathode chemistry, this dissertation highlights a method to utilize these materials to understand the role of metal oxides on Au nanocatalysts. Conclusions to the findings in this dissertation are provided in Chapter 6. Future perspectives on the technical research provided herein this dissertation is included in Chapter 7. Additionally, Chapter 7 details future perspectives for lithium batteries and how they can facilitate the global transition toward a sustainable future.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Doctoral thesis . 2021
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Doctoral thesis . 2021
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ogutu, Z. A.;

    AbstractThis paper presents the impact of ecotourism on livelihood and natural resource management in the periphery of Amboseli Biosphere Reserve in Kenya. Ecotourism initiatives that have been introduced by Porini Ecotourism, a private investor, are benefiting Eselenkei Group Ranch in terms of income, improved infrastructure, employment opportunities and exposure. Over US$5000 is received annually as land rent, gate fee and bed charges. Twenty‐six Maasai men are employed for the upkeep of project facilities. The community's capacity to facilitate resource‐related conflicts has improved following support from development institutions. An expanding livelihood base is reducing local vulnerability to disaster and people–wildlife conflicts. The numbers of resident wildlife species in the conservation area have increased due to regeneration of woody species and reduced frequency of livestock.Despite the achievements, ecotourism is threatened by cultivation. The latter is jeopardizing conservation efforts, as the area frequented by wildlife is being lost and people–wildlife conflicts intensified. Another dilemma is that the Eselenkei community is not effectively participating in ecotourism a situation that is associated with inadequate management and negotiation skills in the group ranch committee. The latter requires leadership and microenterprise management skills if earnings from ecotourism are to be effectively invested in alternative sources of livelihood, to reduce current and potential conflicts. There is also need to build the community's capacity for the promotion of activities that compliment ecotourism. Frequent breakdown of community boreholes lead to dependence on the conservation area for water during prolonged drought, intensifying conflicts between livestock and wildlife. Referring to low‐impact nature‐based tourism packages that benefit local communities and the national government while helping to conserve the resource base (Kenya Wildlife Service (KWS), unpublished report, 2001). Copyright © 2002 John Wiley & Sons, Ltd.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Land Degradation and...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Other literature type . 2002
    Data sources: VTechWorks
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Land Degradation and Development
    Article . 2002 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Land Degradation and...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Other literature type . 2002
      Data sources: VTechWorks
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Land Degradation and Development
      Article . 2002 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.