Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • Country
  • Language
  • Source
  • Research community
  • Subcommunity
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17,902 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Neale, David Bryan; Mosca, Elena; Di Pierro, Erica Adele;

    The Alpine Forest Genomics Network was formed in 2011 and held its first annual meeting on June 24–26, 2012, in the Natural Park Adamello Brenta in Trentino Region, Italy. The meeting was attended by 30 researchers from the alpine region of Europe and had two primary goals: (1) for researchers to introduce each other to current and planned research activities in forest landscape genomics and (2) to develop a strategic vision for the network. A steering committee was elected and will develop a white paper over the next year. The next annual meeting will be held in Austria in June 2013.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tree Genetics & Genomes
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Technology of microbial fuel cells (MFC), allowing for the direct production of electricity from biodegradable materials can provide the future of not only energy production, but also wastewater treatment technologies. The fuel for microbial fuel cells can be every source of biodegradable organic matter. An important feature of this technology is to provide cells with very low investment costs. In microbial fuel cell as electrode are used carbon electrodes are most common. The paper presents an analysis of the possibilities of using Cu-B alloy as the electrode in microbial fuel cells. The catalyst should have high catalytic activity and low price. It is therefore necessary to search for materials that meet both of these criteria. The presented measurements include a comparison of changes in the concentration of COD, NH4+ and NO3- in the reactor without aeration, with aeration and with using a microbial fuel cell. It has been shown that the Cu-B alloy may be used as electrode in MFC. The reduction time for COD with the use of microbial fuel cell with the steel catalyst is similar to the reduction time with aeration. However, the characteristic of the curve for aeration is more advantageous for the wastewater treatment process. However, the use of microbial fuel cell allow save energy required for aeration. The obtained current density was approx. 0.18 mA/cm2. The measurements showed that microbial fuel cells may contribute to the development of renewable energy sources while being used for wastewater treatment plant or assisting their purification. The search for new catalysts can contribute to increasing the efficiency of microbial fuel cells both in terms of wastewater treatment, as well as the amount of energy produced. The resulting current density is small, however, to find new, efficient catalysts may allow for more rapid development of renewable energy technologies. Mikrobiologiczne ogniwa paliwowe, których technologia opiera się na bezpośredniej produkcji energii elektrycznej z surowców biodegradowalnych z pewnością może być rozpatrywana jako technologia przyszłości zarówno pod względem produkcji energii jak i oczyszczania ścieków. Istotnym aspektem staje się zatem poszukiwanie takich ogniw, których koszty inwestycyjne byłyby niewielkie. W przypadku mikrobiologicznych ogniw paliwowych ze względów inwestycyjnych najczęściej stosuje się elektrody węglowe. Praca przedstawia analizę możliwości wykorzystania stopu Cu-B jako katalizatora elektrody paliwowej. Metodyka pomiarowa obejmuje porównanie zmian stężenia ChZT, NH4+ oraz NO3- w reaktorze z napowietrzaniem oraz przy wykorzystaniu mikrobiologicznego ogniwa paliwowego. Badania wykazują, że istnieje możliwość wykorzystania stopu Cu-B jako katalizatora elektrody paliwowej. Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katalizatorem Cu-B zbliżony jest do czasu redukcji przy napowietrzaniu. Charakterystyka krzywej dla napowietrzania jest jednak bardziej korzystna dla procesu oczyszczania ścieków. Jednak wykorzystanie mikrobiologicznego ogniwa paliwowego pozwala na zaoszczędzenie energii koniecznej do napowietrzania. Uzyskiwana gęstość prądu wynosiła ok. 0,18 mA/cm2. Pomiary wykazują, że wykorzystanie mikrobiologicznych ogniw paliwowych do oczyszczania ścieków jest kierunkiem jak najbardziej słusznym, a jednocześnie może w przyszłości w znacznym stopniu przyczynić się do rozwoju odnawialnych źródeł energii.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Melón Guerra, Iván;

    ABSTRACT: There is currently a global awareness that the reserves of fossil fuels are finite and will eventually run out someday in the near future, together with the environmental problems involved in the use of these fuels with the emission of greenhouse gases and global warming. Therefore it is necessary to carry out a change to the actual energy model. In this context renewable energy arises as one of the possible solutions to this problem. Our society is steadily focusing on renewable energy and the associated technologies are becoming more and more efficient. In this way, the share of alternative energies in the total supply of electricity is continuously increasing. Of all the main renewable energy sources, such as the sun, biomass, the wind or the sea, the latter is the one that has least has been exploited so far. This thesis is intends to provide an overview on wave energy as a renewable source, by analysing the phenomena of the swell, with an introduction to the theory of waves describing some of the theoretical models and explaining some of the many existing conversion technologies, highlighting the finest developed devices available at present‐day. A device classification is also provided, taking into account various aspects as well as pointing out the various energy conversion devices that have already been installed in pilot wave‐parks. The limitations of these devices are presented in terms of variability of the ocean swells and with respect to efficiency. In addition, it is important to check if these energy conversion systems are currently profitable from an economic point of view, and also to analyse their potential environmental impact. Wave energy has been hailed as the most promising renewable energy source for maritime countries. It is inexhaustible, does not generate toxic waste and holds a great potential that has not yet been exploited, which makes it one of the most promising renewable sources of energy for the future as we will see in the present thesis. The marine energy in general, and in particular the energy of the waves, is still considered as an emerging industry in an evolving state of pre‐commercial technological envelopment, marked by great opportunities but also by numerous obstacles to overcome, before achieving commercial competitiveness with other sources. At present the sector is in an early stage of development, but some of the results look promising, with several conversion systems in operation as prototypes in various experimental wave‐parks. The system success depends of the correct match between the output power‐curve of the device and the local wave statistics, in terms of wave‐depth, direction and period. In any case the development of this technology will need significant funding support, because it is still incipient and thus not yet competitive with other renewable energy sources. It will need a period of tests and improvements. The road to competitiveness is marked by the need to test a multitude of different technologies and, even though the associated high costs raise the risk of the projects, their major the advantages makes desirable further progress in their research and development. RESUMEN: Actualmente existe una conciencia mundial de que las reservas de combustibles fósiles son finitas y se agotaran algún día en un futuro próximo y junto a los problemas medioambientales (emisiones de gases invernadero y calentamiento global) que conlleva la utilización de estos combustibles hacen por tanto necesario llevar a cabo un cambio de modelo energético. En este contexto surgen las energías renovables como una de las posibles soluciones para este problema. Cada vez se está apostando más por las energías renovables y éstas son cada vez más eficientes. De este modo, el porcentaje procedente de energías alternativas respecto al abastecimiento total de energía eléctrica está en continuo aumento. De todas las fuentes de energía renovables principales como el sol, el viento, la biomasa o el mar, ésta última es la que menos se ha explotado hasta el momento. En la presente tesis, se pretende dar una visión general de la energía de las olas como fuente energética, se analiza el fenómeno del oleaje, se hace una introducción a la teoría de olas proporcionando alguno de los modelos teóricos para describirlo y se explican algunos de los muchos dispositivos tecnológicos de conversión existentes destacando los de mayor desarrollo en la actualidad, estableciendo una clasificación de los mismos atendiendo a diversos aspectos así como viendo a su vez diversos dispositivos que ya han sido instalados en parques experimentales de las olas. También se indican las limitaciones que pueden tener esta clase de dispositivos en cuanto a variabilidad del oleaje y eficiencia se refiere. Se trata de comprobar además, si esta energía es rentable actualmente desde un punto de vista económico y se analiza también su posible impacto medioambiental. La energía de las olas ó también llamada energía undimotriz, ha sido acogida como la más prometedora fuente de energía renovable para los países marítimos. Es inagotable, no genera residuos tóxicos y posee un gran potencial que aún no ha sido explotado por lo que la hace una de las energías renovables más prometedoras para el futuro como veremos en la tesis presente. La energía marina y concretamente la energía de las olas se considera aún una industria emergente, en un estado incipiente de desarrollo tecnológico pre‐comercial, marcado por grandes oportunidades pero también por numerosas barreras por superar hasta lograr una explotación comercial competitiva con otra fuentes. Cabe destacar la importancia que tiene la adaptación del diseño de los dispositivos (superficie de potencia) a la distribución de energía disponible en el emplazamiento donde van a ser instalados con el objetivo de optimizar su eficiencia. También se destaca la importancia que adquiere la supervivencia de los dispositivos. El camino hacia la competitividad viene marcado por la multitud de tecnologías diferentes y los elevados costes que elevan el riesgo de los proyectos, aunque las ventajas que presenta hace que se siga avanzando en su investigación y desarrollo. Ingeniería técnica Industrial. Especialidad en Mecánica

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility66
    visibilityviews66
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Leandro D. Guerrero; Carol Davies-Sala; Rodrigo M. Pontiggia; Melisa Altina; +3 Authors

    Bacterial community structure and dynamics in anaerobic digesters are primarily influenced by feedstock composition. It is therefore important to unveil microbial traits that explain microbiome variations in response to substrate changes. Here, gene and genome-centric metagenomics were used to examine microbiome dynamics in four laboratory-scale reactors, in which sewage sludge was co-digested with increasing amounts of food waste. A co-occurrence network revealed microbiome shifts in response to changes in substrate composition and concentration. Food waste concentration correlated with extracellular enzymes and metagenome-assembled genomes (MAGs) involved in the degradation of complex carbohydrates commonly found in fruits and plant cell walls as well as with the abundance of hydrolytic MAGs. A key role was attributed to Proteiniphillum for being the only bacteria that encoded the complete pectin degradation pathway. These results suggest that changes of feedstock composition establish new microbial niches for bacteria with the capacity to degrade newly added substrates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2022
    License: CC BY NC ND
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2022
      License: CC BY NC ND
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Stojanović, M.; Stanković, Srboljub; Vukic, D; Osmokrović, Predrag V.; +2 Authors

    Photovoltaic conversion (PV) of solar energy based on the solar cells, is becoming acceptable for various applications. One of the most up-to-date semiconductor technologies, it enables development of the systems for lighting, supplying electrical energy to radio and TV stations. electromotors (kW power) for wide application in industry, agriculture and individual homes. for refrigerators for different purposes etc. The bases of this technology are semiconductor materials. In this paper we analyze the influence of the basic semiconductor materials on further increase of applications of PV systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Materials Science Forum
    Article . 1998 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility31
    visibilityviews31
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Materials Science Forum
      Article . 1998 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan J. Aucar; Alessandro Stroppa; Gustavo A. Aucar;

    When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2023
    License: CC BY NC ND
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Journal of Physical Chemistry Letters
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2023
      License: CC BY NC ND
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Journal of Physical Chemistry Letters
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pérez Pérez, F. Javier; Abril Sánchez, Isabel; Arista, Néstor R.; García Molina, Rafael;

    Abstract The stopping power of large (H2)n-clusters in silicon is analyzed as a function of the cluster size and the cluster velocity. A dielectric formalism is used to describe the electronic interaction between the projectile and the target. The intramolecular and intermolecular interference effects in the cluster energy loss are evaluated as a function of the cluster velocity. For high velocities and large clusters the intermolecular collective effects dominate in the cluster stopping power. For each cluster velocity we find a resonant cluster size for which the intermolecular stopping power clearly shows a maximum and it saturates to a constant value for larger clusters. The radius of this resonant cluster and the maximum stopping power are proportional to the cluster velocity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Esther Museo Patrick; Irene Koomen; Shepard Ndlela; John Mwibanda Wesonga;

    False codling moth Thaumatotibia leucotreta (Meyrick) is a pest native to sub-Saharan Africa infesting over 100 plant species including tomato. Its survival and performance are influenced by changes in precipitation and stress-related biochemical changes in the host plant. Water availability for agricultural production continues to decline due to climate change affecting drought-sensitive crops like tomatoes. Little is known on host plant-insect interactions of T. leucotreta and tomato as influenced by moisture stress. Hence, our study tested the impact of different water holding capacities (WHC) (40%, 50%, 60%, 70%, and 90%) of plant growing media on the growth of Anna F1 and Yaye tomato varieties and the infestation rate and development of T. leucotreta on the two varieties. WHC significantly influenced the growth of Anna F1 and Yaye tomato varieties. WHC significantly affected stem girth of Anna F1 variety and leaf length, leaf width, stem girth, and plant height of the Yaye variety. For Yaye variety, T. leucotreta laid a significantly high number of eggs when grown at 70% WHC and had the highest pupation when grown at 60% WHC. The development of T. leucotreta as observed on wing growth was highest at 40% and 50% WHC for both Anna F1 variety and Yaye variety. Our study shows that the infestation of tomato by T. leucotreta is likely to be high when grown in water-scarce media. The results are useful for predicting possible future T. leucotreta trends with increasing water scarcity due to climate change and in designing pest management programmes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2021
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neotropical Entomology
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2021
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neotropical Entomology
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lukić, Ivana; Kesic, Zeljka; Maksimović, Svetolik; Zdujić, Miodrag; +3 Authors

    The kinetics of heterogeneous methanolysis of sunflower oil and used vegetable oil were studied at different temperatures, ranging from 60 to 96 degrees C using CaO center dot ZnO as catalyst (2 wt% on the basis of oil) and methanol to oil molar ratio of 10:1. Heterogeneous CaO center dot ZnO catalyst was synthesized by mechanochemical treatment of CaO and ZnO powder mixture with the addition of water necessary for the formation of corresponding mixed hydroxides, and their calcination at 700 degrees C in air. It was shown that kinetics of overall process could be described as pseudo-first order reaction. For the sunflower oil methanolysis at 60 and 70 degrees C, the rate of process at the beginning of biodiesel synthesis was limited by triglycerides mass transfer to the catalyst surface, and after that it is governed by the rate of chemical reaction at catalyst surface. At higher temperatures the influence of mass transfer resistance is almost negligible implying that the rate of chemical reaction determines the overall kinetic of biodiesel synthesis. In the case of used vegetable oil, the influence of mass transfer resistance was not observed either at higher or lower temperature. The kinetic model that describes the whole process well was proposed, and it comprises both the triglycerides mass transfer and chemical reaction controlled regime. The overall volumetric mass transfer coefficient was defined, assuming that it depends on the conversion of triglycerides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CER - Central Reposi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility48
    visibilityviews48
    downloaddownloads1
    Powered by Usage counts
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Η παρούσα εργασία εξετάζει την επίδραση της ενεργειακής πολιτικής και των εξωτερικών σχέσεων της Τουρκίας στα ζητήματα διαχείρισης των φυσικών πόρων, ειδικότερα των υδρογονανθράκων, αναδεικνύοντας τον σημαντικό ρόλο που επιδιώκει να αναλάβει στην αύξηση της ενεργειακής ασφάλειας της Ευρώπης, αναβαθμίζοντας ταυτόχρονα τη γεωπολιτική της θέση.Αρχικά, γίνεται αναφορά στη σημασία των όρων της ασφάλειας, της ενέργειας, αλλά και της ενεργειακής ασφάλειας, ως βασικά συστατικά στοιχεία διατήρησης της ισόρροπης ανάπτυξης των σύγχρονων κρατών, εστιάζοντας ειδικότερα στις ευρωπαϊκές πολιτικές ενέργειας και στην ανάγκη δημιουργίας του «Νότιου Διαδρόμου». Στη συνέχεια, παρουσιάζεται η τουρκική ενεργειακή πολιτική, οι δυνατότητες και οι αδυναμίες της, οι στόχοι και οι επιδιώξεις της ώστε να επιτευχθεί η ενεργειακή της αυτονομία, είτε συμμετέχοντας δυναμικά και ανελλιπώς σε κατασκευή αγωγών και, υποδομών ενέργειας, είτε στη χάραξη νέων διαδρόμων μεταφοράς υδρογονανθράκων, συμβάλλοντας ταυτόχρονα στη μεγιστοποίηση της ευρωπαϊκής ενεργειακής ασφάλειας. Τέλος, η γεωπολιτική της ενέργειας στην Ευρασία και στην «Περίμετρό» της, επηρεάζει την εσωτερική πολιτική πραγματικότητα της Τουρκίας, διαμορφώνοντας τις στρατηγικές της επιδιώξεις, σχηματοποιώντας παράλληλα τις εξωτερικές της σχέσεις με όλους τους διεθνείς και περιφερειακούς δρώντες, με τέτοιο τρόπο ώστε να εντοπιστούν οι προοπτικές και οι κίνδυνοι για το ενεργειακό της μέλλον.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.26215/he...
    Master thesis . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.26215/he...
      Master thesis . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 2
  • 3
  • 4
  • 5
  • 6
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
17,902 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Neale, David Bryan; Mosca, Elena; Di Pierro, Erica Adele;

    The Alpine Forest Genomics Network was formed in 2011 and held its first annual meeting on June 24–26, 2012, in the Natural Park Adamello Brenta in Trentino Region, Italy. The meeting was attended by 30 researchers from the alpine region of Europe and had two primary goals: (1) for researchers to introduce each other to current and planned research activities in forest landscape genomics and (2) to develop a strategic vision for the network. A steering committee was elected and will develop a white paper over the next year. The next annual meeting will be held in Austria in June 2013.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tree Genetics & Genomes
    Article . 2013 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Technology of microbial fuel cells (MFC), allowing for the direct production of electricity from biodegradable materials can provide the future of not only energy production, but also wastewater treatment technologies. The fuel for microbial fuel cells can be every source of biodegradable organic matter. An important feature of this technology is to provide cells with very low investment costs. In microbial fuel cell as electrode are used carbon electrodes are most common. The paper presents an analysis of the possibilities of using Cu-B alloy as the electrode in microbial fuel cells. The catalyst should have high catalytic activity and low price. It is therefore necessary to search for materials that meet both of these criteria. The presented measurements include a comparison of changes in the concentration of COD, NH4+ and NO3- in the reactor without aeration, with aeration and with using a microbial fuel cell. It has been shown that the Cu-B alloy may be used as electrode in MFC. The reduction time for COD with the use of microbial fuel cell with the steel catalyst is similar to the reduction time with aeration. However, the characteristic of the curve for aeration is more advantageous for the wastewater treatment process. However, the use of microbial fuel cell allow save energy required for aeration. The obtained current density was approx. 0.18 mA/cm2. The measurements showed that microbial fuel cells may contribute to the development of renewable energy sources while being used for wastewater treatment plant or assisting their purification. The search for new catalysts can contribute to increasing the efficiency of microbial fuel cells both in terms of wastewater treatment, as well as the amount of energy produced. The resulting current density is small, however, to find new, efficient catalysts may allow for more rapid development of renewable energy technologies. Mikrobiologiczne ogniwa paliwowe, których technologia opiera się na bezpośredniej produkcji energii elektrycznej z surowców biodegradowalnych z pewnością może być rozpatrywana jako technologia przyszłości zarówno pod względem produkcji energii jak i oczyszczania ścieków. Istotnym aspektem staje się zatem poszukiwanie takich ogniw, których koszty inwestycyjne byłyby niewielkie. W przypadku mikrobiologicznych ogniw paliwowych ze względów inwestycyjnych najczęściej stosuje się elektrody węglowe. Praca przedstawia analizę możliwości wykorzystania stopu Cu-B jako katalizatora elektrody paliwowej. Metodyka pomiarowa obejmuje porównanie zmian stężenia ChZT, NH4+ oraz NO3- w reaktorze z napowietrzaniem oraz przy wykorzystaniu mikrobiologicznego ogniwa paliwowego. Badania wykazują, że istnieje możliwość wykorzystania stopu Cu-B jako katalizatora elektrody paliwowej. Czas redukcji ChZT przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z katalizatorem Cu-B zbliżony jest do czasu redukcji przy napowietrzaniu. Charakterystyka krzywej dla napowietrzania jest jednak bardziej korzystna dla procesu oczyszczania ścieków. Jednak wykorzystanie mikrobiologicznego ogniwa paliwowego pozwala na zaoszczędzenie energii koniecznej do napowietrzania. Uzyskiwana gęstość prądu wynosiła ok. 0,18 mA/cm2. Pomiary wykazują, że wykorzystanie mikrobiologicznych ogniw paliwowych do oczyszczania ścieków jest kierunkiem jak najbardziej słusznym, a jednocześnie może w przyszłości w znacznym stopniu przyczynić się do rozwoju odnawialnych źródeł energii.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Melón Guerra, Iván;

    ABSTRACT: There is currently a global awareness that the reserves of fossil fuels are finite and will eventually run out someday in the near future, together with the environmental problems involved in the use of these fuels with the emission of greenhouse gases and global warming. Therefore it is necessary to carry out a change to the actual energy model. In this context renewable energy arises as one of the possible solutions to this problem. Our society is steadily focusing on renewable energy and the associated technologies are becoming more and more efficient. In this way, the share of alternative energies in the total supply of electricity is continuously increasing. Of all the main renewable energy sources, such as the sun, biomass, the wind or the sea, the latter is the one that has least has been exploited so far. This thesis is intends to provide an overview on wave energy as a renewable source, by analysing the phenomena of the swell, with an introduction to the theory of waves describing some of the theoretical models and explaining some of the many existing conversion technologies, highlighting the finest developed devices available at present‐day. A device classification is also provided, taking into account various aspects as well as pointing out the various energy conversion devices that have already been installed in pilot wave‐parks. The limitations of these devices are presented in terms of variability of the ocean swells and with respect to efficiency. In addition, it is important to check if these energy conversion systems are currently profitable from an economic point of view, and also to analyse their potential environmental impact. Wave energy has been hailed as the most promising renewable energy source for maritime countries. It is inexhaustible, does not generate toxic waste and holds a great potential that has not yet been exploited, which makes it one of the most promising renewable sources of energy for the future as we will see in the present thesis. The marine energy in general, and in particular the energy of the waves, is still considered as an emerging industry in an evolving state of pre‐commercial technological envelopment, marked by great opportunities but also by numerous obstacles to overcome, before achieving commercial competitiveness with other sources. At present the sector is in an early stage of development, but some of the results look promising, with several conversion systems in operation as prototypes in various experimental wave‐parks. The system success depends of the correct match between the output power‐curve of the device and the local wave statistics, in terms of wave‐depth, direction and period. In any case the development of this technology will need significant funding support, because it is still incipient and thus not yet competitive with other renewable energy sources. It will need a period of tests and improvements. The road to competitiveness is marked by the need to test a multitude of different technologies and, even though the associated high costs raise the risk of the projects, their major the advantages makes desirable further progress in their research and development. RESUMEN: Actualmente existe una conciencia mundial de que las reservas de combustibles fósiles son finitas y se agotaran algún día en un futuro próximo y junto a los problemas medioambientales (emisiones de gases invernadero y calentamiento global) que conlleva la utilización de estos combustibles hacen por tanto necesario llevar a cabo un cambio de modelo energético. En este contexto surgen las energías renovables como una de las posibles soluciones para este problema. Cada vez se está apostando más por las energías renovables y éstas son cada vez más eficientes. De este modo, el porcentaje procedente de energías alternativas respecto al abastecimiento total de energía eléctrica está en continuo aumento. De todas las fuentes de energía renovables principales como el sol, el viento, la biomasa o el mar, ésta última es la que menos se ha explotado hasta el momento. En la presente tesis, se pretende dar una visión general de la energía de las olas como fuente energética, se analiza el fenómeno del oleaje, se hace una introducción a la teoría de olas proporcionando alguno de los modelos teóricos para describirlo y se explican algunos de los muchos dispositivos tecnológicos de conversión existentes destacando los de mayor desarrollo en la actualidad, estableciendo una clasificación de los mismos atendiendo a diversos aspectos así como viendo a su vez diversos dispositivos que ya han sido instalados en parques experimentales de las olas. También se indican las limitaciones que pueden tener esta clase de dispositivos en cuanto a variabilidad del oleaje y eficiencia se refiere. Se trata de comprobar además, si esta energía es rentable actualmente desde un punto de vista económico y se analiza también su posible impacto medioambiental. La energía de las olas ó también llamada energía undimotriz, ha sido acogida como la más prometedora fuente de energía renovable para los países marítimos. Es inagotable, no genera residuos tóxicos y posee un gran potencial que aún no ha sido explotado por lo que la hace una de las energías renovables más prometedoras para el futuro como veremos en la tesis presente. La energía marina y concretamente la energía de las olas se considera aún una industria emergente, en un estado incipiente de desarrollo tecnológico pre‐comercial, marcado por grandes oportunidades pero también por numerosas barreras por superar hasta lograr una explotación comercial competitiva con otra fuentes. Cabe destacar la importancia que tiene la adaptación del diseño de los dispositivos (superficie de potencia) a la distribución de energía disponible en el emplazamiento donde van a ser instalados con el objetivo de optimizar su eficiencia. También se destaca la importancia que adquiere la supervivencia de los dispositivos. El camino hacia la competitividad viene marcado por la multitud de tecnologías diferentes y los elevados costes que elevan el riesgo de los proyectos, aunque las ventajas que presenta hace que se siga avanzando en su investigación y desarrollo. Ingeniería técnica Industrial. Especialidad en Mecánica

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility66
    visibilityviews66
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Leandro D. Guerrero; Carol Davies-Sala; Rodrigo M. Pontiggia; Melisa Altina; +3 Authors

    Bacterial community structure and dynamics in anaerobic digesters are primarily influenced by feedstock composition. It is therefore important to unveil microbial traits that explain microbiome variations in response to substrate changes. Here, gene and genome-centric metagenomics were used to examine microbiome dynamics in four laboratory-scale reactors, in which sewage sludge was co-digested with increasing amounts of food waste. A co-occurrence network revealed microbiome shifts in response to changes in substrate composition and concentration. Food waste concentration correlated with extracellular enzymes and metagenome-assembled genomes (MAGs) involved in the degradation of complex carbohydrates commonly found in fruits and plant cell walls as well as with the abundance of hydrolytic MAGs. A key role was attributed to Proteiniphillum for being the only bacteria that encoded the complete pectin degradation pathway. These results suggest that changes of feedstock composition establish new microbial niches for bacteria with the capacity to degrade newly added substrates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2022
    License: CC BY NC ND
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    27
    citations27
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2022
      License: CC BY NC ND
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Stojanović, M.; Stanković, Srboljub; Vukic, D; Osmokrović, Predrag V.; +2 Authors

    Photovoltaic conversion (PV) of solar energy based on the solar cells, is becoming acceptable for various applications. One of the most up-to-date semiconductor technologies, it enables development of the systems for lighting, supplying electrical energy to radio and TV stations. electromotors (kW power) for wide application in industry, agriculture and individual homes. for refrigerators for different purposes etc. The bases of this technology are semiconductor materials. In this paper we analyze the influence of the basic semiconductor materials on further increase of applications of PV systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Materials Science Forum
    Article . 1998 . Peer-reviewed
    License: Trans Tech Publications Copyright and Content Usage Policy
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility31
    visibilityviews31
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VinaR - Repository o...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Materials Science Forum
      Article . 1998 . Peer-reviewed
      License: Trans Tech Publications Copyright and Content Usage Policy
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan J. Aucar; Alessandro Stroppa; Gustavo A. Aucar;

    When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2023
    License: CC BY NC ND
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Journal of Physical Chemistry Letters
    Article . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2023
      License: CC BY NC ND
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Journal of Physical Chemistry Letters
      Article . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pérez Pérez, F. Javier; Abril Sánchez, Isabel; Arista, Néstor R.; García Molina, Rafael;

    Abstract The stopping power of large (H2)n-clusters in silicon is analyzed as a function of the cluster size and the cluster velocity. A dielectric formalism is used to describe the electronic interaction between the projectile and the target. The intramolecular and intermolecular interference effects in the cluster energy loss are evaluated as a function of the cluster velocity. For high velocities and large clusters the intermolecular collective effects dominate in the cluster stopping power. For each cluster velocity we find a resonant cluster size for which the intermolecular stopping power clearly shows a maximum and it saturates to a constant value for larger clusters. The radius of this resonant cluster and the maximum stopping power are proportional to the cluster velocity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Esther Museo Patrick; Irene Koomen; Shepard Ndlela; John Mwibanda Wesonga;

    False codling moth Thaumatotibia leucotreta (Meyrick) is a pest native to sub-Saharan Africa infesting over 100 plant species including tomato. Its survival and performance are influenced by changes in precipitation and stress-related biochemical changes in the host plant. Water availability for agricultural production continues to decline due to climate change affecting drought-sensitive crops like tomatoes. Little is known on host plant-insect interactions of T. leucotreta and tomato as influenced by moisture stress. Hence, our study tested the impact of different water holding capacities (WHC) (40%, 50%, 60%, 70%, and 90%) of plant growing media on the growth of Anna F1 and Yaye tomato varieties and the infestation rate and development of T. leucotreta on the two varieties. WHC significantly influenced the growth of Anna F1 and Yaye tomato varieties. WHC significantly affected stem girth of Anna F1 variety and leaf length, leaf width, stem girth, and plant height of the Yaye variety. For Yaye variety, T. leucotreta laid a significantly high number of eggs when grown at 70% WHC and had the highest pupation when grown at 60% WHC. The development of T. leucotreta as observed on wing growth was highest at 40% and 50% WHC for both Anna F1 variety and Yaye variety. Our study shows that the infestation of tomato by T. leucotreta is likely to be high when grown in water-scarce media. The results are useful for predicting possible future T. leucotreta trends with increasing water scarcity due to climate change and in designing pest management programmes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2021
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neotropical Entomology
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2021
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neotropical Entomology
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lukić, Ivana; Kesic, Zeljka; Maksimović, Svetolik; Zdujić, Miodrag; +3 Authors

    The kinetics of heterogeneous methanolysis of sunflower oil and used vegetable oil were studied at different temperatures, ranging from 60 to 96 degrees C using CaO center dot ZnO as catalyst (2 wt% on the basis of oil) and methanol to oil molar ratio of 10:1. Heterogeneous CaO center dot ZnO catalyst was synthesized by mechanochemical treatment of CaO and ZnO powder mixture with the addition of water necessary for the formation of corresponding mixed hydroxides, and their calcination at 700 degrees C in air. It was shown that kinetics of overall process could be described as pseudo-first order reaction. For the sunflower oil methanolysis at 60 and 70 degrees C, the rate of process at the beginning of biodiesel synthesis was limited by triglycerides mass transfer to the catalyst surface, and after that it is governed by the rate of chemical reaction at catalyst surface. At higher temperatures the influence of mass transfer resistance is almost negligible implying that the rate of chemical reaction determines the overall kinetic of biodiesel synthesis. In the case of used vegetable oil, the influence of mass transfer resistance was not observed either at higher or lower temperature. The kinetic model that describes the whole process well was proposed, and it comprises both the triglycerides mass transfer and chemical reaction controlled regime. The overall volumetric mass transfer coefficient was defined, assuming that it depends on the conversion of triglycerides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CER - Central Reposi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility48
    visibilityviews48
    downloaddownloads1
    Powered by Usage counts
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Η παρούσα εργασία εξετάζει την επίδραση της ενεργειακής πολιτικής και των εξωτερικών σχέσεων της Τουρκίας στα ζητήματα διαχείρισης των φυσικών πόρων, ειδικότερα των υδρογονανθράκων, αναδεικνύοντας τον σημαντικό ρόλο που επιδιώκει να αναλάβει στην αύξηση της ενεργειακής ασφάλειας της Ευρώπης, αναβαθμίζοντας ταυτόχρονα τη γεωπολιτική της θέση.Αρχικά, γίνεται αναφορά στη σημασία των όρων της ασφάλειας, της ενέργειας, αλλά και της ενεργειακής ασφάλειας, ως βασικά συστατικά στοιχεία διατήρησης της ισόρροπης ανάπτυξης των σύγχρονων κρατών, εστιάζοντας ειδικότερα στις ευρωπαϊκές πολιτικές ενέργειας και στην ανάγκη δημιουργίας του «Νότιου Διαδρόμου». Στη συνέχεια, παρουσιάζεται η τουρκική ενεργειακή πολιτική, οι δυνατότητες και οι αδυναμίες της, οι στόχοι και οι επιδιώξεις της ώστε να επιτευχθεί η ενεργειακή της αυτονομία, είτε συμμετέχοντας δυναμικά και ανελλιπώς σε κατασκευή αγωγών και, υποδομών ενέργειας, είτε στη χάραξη νέων διαδρόμων μεταφοράς υδρογονανθράκων, συμβάλλοντας ταυτόχρονα στη μεγιστοποίηση της ευρωπαϊκής ενεργειακής ασφάλειας. Τέλος, η γεωπολιτική της ενέργειας στην Ευρασία και στην «Περίμετρό» της, επηρεάζει την εσωτερική πολιτική πραγματικότητα της Τουρκίας, διαμορφώνοντας τις στρατηγικές της επιδιώξεις, σχηματοποιώντας παράλληλα τις εξωτερικές της σχέσεις με όλους τους διεθνείς και περιφερειακούς δρώντες, με τέτοιο τρόπο ώστε να εντοπιστούν οι προοπτικές και οι κίνδυνοι για το ενεργειακό της μέλλον.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.26215/he...
    Master thesis . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Institutional Reposi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.26215/he...
      Master thesis . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 2
  • 3
  • 4
  • 5
  • 6
  • chevron_right
Powered by OpenAIRE graph