- home
- Advanced Search
- Energy Research
- Nuclear Materials and Energy
- Energy Research
- Nuclear Materials and Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Si Thu Kyaw; Si Thu Kyaw; Wei Sun; Atheer Saad Hashim; Atheer Saad Hashim;The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1, 2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM) is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Si Thu Kyaw; Si Thu Kyaw; Wei Sun; Atheer Saad Hashim; Atheer Saad Hashim;The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1, 2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM) is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Masayuki Ohta; Hiromitsu Suzuki; Satoshi Sato; Saerom Kwon; Kentaro Ochiai;A plan of an advanced fusion neutron source (A-FNS) by using d-Li reaction is in progress at Rokkasho in Japan. We investigate multipurpose usages of the A-FNS in addition to fusion material irradiation test. Production of medical isotope 99Mo is considered as one of the usages. We conducted a conceptual study on a module for radioisotope production which was composed of a neutron spectrum shifter and a neutron reflector. We examined impacts of materials of the shifter and reflector on amounts of the 99Mo production, and their thicknesses. It was concluded that beryllium is the most suitable material both for the shifter and the reflector from the viewpoint of the 99Mo production. It was shown that we produced an enough amount of the 99Mo for the demand in Japan. We can apply natural molybdenum for this purpose. It was also shown that we could use a part of irradiation capsules in high flux test module, which was for the fusion material irradiation test originally, by using isotopically enriched 100Mo to meet that. Keywords: d-Li reaction, Fusion neutron source, Medical isotope, 98Mo(n,γ)99Mo, 100Mo(n,2n)99Mo, A-FNS
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Masayuki Ohta; Hiromitsu Suzuki; Satoshi Sato; Saerom Kwon; Kentaro Ochiai;A plan of an advanced fusion neutron source (A-FNS) by using d-Li reaction is in progress at Rokkasho in Japan. We investigate multipurpose usages of the A-FNS in addition to fusion material irradiation test. Production of medical isotope 99Mo is considered as one of the usages. We conducted a conceptual study on a module for radioisotope production which was composed of a neutron spectrum shifter and a neutron reflector. We examined impacts of materials of the shifter and reflector on amounts of the 99Mo production, and their thicknesses. It was concluded that beryllium is the most suitable material both for the shifter and the reflector from the viewpoint of the 99Mo production. It was shown that we produced an enough amount of the 99Mo for the demand in Japan. We can apply natural molybdenum for this purpose. It was also shown that we could use a part of irradiation capsules in high flux test module, which was for the fusion material irradiation test originally, by using isotopically enriched 100Mo to meet that. Keywords: d-Li reaction, Fusion neutron source, Medical isotope, 98Mo(n,γ)99Mo, 100Mo(n,2n)99Mo, A-FNS
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors: Shams-Latifi, Jila; Pitthan, Eduardo; Mika Wolf, Philipp; Primetzhofer, Daniel;The experimental electronic stopping cross-section of tungsten for low-energy protons, deuterons, and helium ions is deduced from backscattering experiments from thin films and bulk using time-of-flight low-energy ion scattering (ToF-LEIS). Two complementary experimental approaches showed consistent results in the energy ranges of 0.3–10 keV for protons, 0.33–10 keV for deuterons, and 0.7–10 keV for He+ ions. In relative measurements, a Au sample was used as the reference, while in absolute energy loss measurements, sputter-deposited thin films of tungsten on carbon substrates were employed. The experimental energy-converted spectra were compared to Monte-Carlo simulations in both approaches for quantitative analysis taking the influence of plural and multiple scattering into account. The results show proportionality to the ion velocity. We discuss the present datasets in comparison to semiempirical modelling and predictions from theory.
Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors: Shams-Latifi, Jila; Pitthan, Eduardo; Mika Wolf, Philipp; Primetzhofer, Daniel;The experimental electronic stopping cross-section of tungsten for low-energy protons, deuterons, and helium ions is deduced from backscattering experiments from thin films and bulk using time-of-flight low-energy ion scattering (ToF-LEIS). Two complementary experimental approaches showed consistent results in the energy ranges of 0.3–10 keV for protons, 0.33–10 keV for deuterons, and 0.7–10 keV for He+ ions. In relative measurements, a Au sample was used as the reference, while in absolute energy loss measurements, sputter-deposited thin films of tungsten on carbon substrates were employed. The experimental energy-converted spectra were compared to Monte-Carlo simulations in both approaches for quantitative analysis taking the influence of plural and multiple scattering into account. The results show proportionality to the ion velocity. We discuss the present datasets in comparison to semiempirical modelling and predictions from theory.
Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Muhammad Imran; Zhenhua Hu; Fang Ding; Muhammad Salman Khan; Guang-Nan Luo; Ali Farooq; Imtiaz Ahmad;Laser-induced breakdown spectroscopy (LIBS) was employed for the depth-resolved identification of impurities deposited on the small test tiles used in the experimental advanced superconducting tokamak (EAST). LIBS spectra show the impurity elements of molybdenum (Mo), tungsten (W), carbon (C), copper (Cu), lithium (Li), titanium (Ti), silicon (Si), iron (Fe), and chromium (Cr) in the impurity deposition on the test tiles used in the EAST. The analysis of impurities was performed at various spot positions on the surfaces of the tiles. The impurity deposition is the final destination of the migrating eroded materials in the EAST. The interaction of high-heat plasma with the plasma-facing components (PFCs) causes the erosion of W upper and lower divertors, Mo main wall, the doped graphite (C, Si & Ti) limiters, Li wall conditioning, and CuCrZr heat conductors. Surface morphology was performed by using the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). Depth profile analysis showed the thickness of impurity deposition is in fractions of micrometers because the impurity signals appeared just in a few laser shots. The spectral intensity of impurity was observed differently during the consecutive laser shots on various spot positions that showed the impurity deposition is uneven on the tiles’ surfaces.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Muhammad Imran; Zhenhua Hu; Fang Ding; Muhammad Salman Khan; Guang-Nan Luo; Ali Farooq; Imtiaz Ahmad;Laser-induced breakdown spectroscopy (LIBS) was employed for the depth-resolved identification of impurities deposited on the small test tiles used in the experimental advanced superconducting tokamak (EAST). LIBS spectra show the impurity elements of molybdenum (Mo), tungsten (W), carbon (C), copper (Cu), lithium (Li), titanium (Ti), silicon (Si), iron (Fe), and chromium (Cr) in the impurity deposition on the test tiles used in the EAST. The analysis of impurities was performed at various spot positions on the surfaces of the tiles. The impurity deposition is the final destination of the migrating eroded materials in the EAST. The interaction of high-heat plasma with the plasma-facing components (PFCs) causes the erosion of W upper and lower divertors, Mo main wall, the doped graphite (C, Si & Ti) limiters, Li wall conditioning, and CuCrZr heat conductors. Surface morphology was performed by using the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). Depth profile analysis showed the thickness of impurity deposition is in fractions of micrometers because the impurity signals appeared just in a few laser shots. The spectral intensity of impurity was observed differently during the consecutive laser shots on various spot positions that showed the impurity deposition is uneven on the tiles’ surfaces.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2020 SpainPublisher:Elsevier BV Funded by:EC | ESTEEM 2EC| ESTEEM 2Authors: Scepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; +3 AuthorsScepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; Hugenschmidt, C.; Auger, María A.; Castro Bernal, María Vanessa de;Oxide dispersion strengthened steels are candidate materials for nuclear reactor applications due to a powerful combination of properties, such as reduced activation, high-temperature strength and increased creep resistance. The dispersion of nanometric oxide particles in the steel matrix may also enhance radiation resistance by acting as trapping sites for irradiation induced defects. In this work, an Fe-14Cr-2 W-0.3-Ti-0.3Y2O3 (wt%) steel and a model Fe-14Cr (wt%) alloy were sequentially irradiated with He+ and Fe+ ions up to 15 dpa and 8000 appm to simulate fusion radiation damage. Their microstructural stability was investigated by positron annihilation spectroscopy and transmission electron microscopy. Transmission electron microscopy studies show that under these irradiation conditions there are no significant changes in the mean size, qualitative chemical composition and number density of nanoparticles, although the irradiation appears to induce a slight coarsening of the smaller nanoparticles. Both materials exhibit very small (<2 nm) irradiation-induced bubbles, with similar sizes but lower number density in the ODS steel. Positron annihilation spectroscopy results show the presence of irradiation induced open volume defects, much more noticeable in the model alloy. In both alloys, helium appears to associate with the newly formed vacancy-type defects introduced by the subsequent Fe+ irradiation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 24 Powered bymore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2020 SpainPublisher:Elsevier BV Funded by:EC | ESTEEM 2EC| ESTEEM 2Authors: Scepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; +3 AuthorsScepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; Hugenschmidt, C.; Auger, María A.; Castro Bernal, María Vanessa de;Oxide dispersion strengthened steels are candidate materials for nuclear reactor applications due to a powerful combination of properties, such as reduced activation, high-temperature strength and increased creep resistance. The dispersion of nanometric oxide particles in the steel matrix may also enhance radiation resistance by acting as trapping sites for irradiation induced defects. In this work, an Fe-14Cr-2 W-0.3-Ti-0.3Y2O3 (wt%) steel and a model Fe-14Cr (wt%) alloy were sequentially irradiated with He+ and Fe+ ions up to 15 dpa and 8000 appm to simulate fusion radiation damage. Their microstructural stability was investigated by positron annihilation spectroscopy and transmission electron microscopy. Transmission electron microscopy studies show that under these irradiation conditions there are no significant changes in the mean size, qualitative chemical composition and number density of nanoparticles, although the irradiation appears to induce a slight coarsening of the smaller nanoparticles. Both materials exhibit very small (<2 nm) irradiation-induced bubbles, with similar sizes but lower number density in the ODS steel. Positron annihilation spectroscopy results show the presence of irradiation induced open volume defects, much more noticeable in the model alloy. In both alloys, helium appears to associate with the newly formed vacancy-type defects introduced by the subsequent Fe+ irradiation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 24 Powered bymore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiazi Xiao; Long Yu;Abstract Ion irradiation offers a promising strategy to emulate the irradiation damage induced by energetic neutrons. However, the characterization of the mechanical properties of ion-irradiated materials is not easy considering the limited irradiation depth and inhomogeneous distribution of irradiation-induced defects. Over the last decades, nano-indentation has been recognized as a valid technique to investigate the localized mechanical responses at micro-scale. Therefore, the combination of ion irradiation and nano-indentation has been extensively developed in recent years to study the mechanical behaviors of nuclear structural materials with irradiation effect. In this review, current developments of experimental observations, numerical simulations and theoretical models are summarized concerning both microstructural evolution and macroscopic deformation. Corresponding analysis and discussion could help obtain a sophisticated comprehension of the fundamental deformation mechanisms resulting in mechanical degradation of ion-irradiated materials, and further assist the development of next-generation nuclear structural materials.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiazi Xiao; Long Yu;Abstract Ion irradiation offers a promising strategy to emulate the irradiation damage induced by energetic neutrons. However, the characterization of the mechanical properties of ion-irradiated materials is not easy considering the limited irradiation depth and inhomogeneous distribution of irradiation-induced defects. Over the last decades, nano-indentation has been recognized as a valid technique to investigate the localized mechanical responses at micro-scale. Therefore, the combination of ion irradiation and nano-indentation has been extensively developed in recent years to study the mechanical behaviors of nuclear structural materials with irradiation effect. In this review, current developments of experimental observations, numerical simulations and theoretical models are summarized concerning both microstructural evolution and macroscopic deformation. Corresponding analysis and discussion could help obtain a sophisticated comprehension of the fundamental deformation mechanisms resulting in mechanical degradation of ion-irradiated materials, and further assist the development of next-generation nuclear structural materials.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.;AbstractOne of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A=245MW/m2, B=708MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.;AbstractOne of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A=245MW/m2, B=708MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV T.D. Rognlien; M.E. Rensink; E. Emdee; R.J. Goldston; J. Schwartz; D.P. Stotler;Results are presented for one- and two-dimensional (2D) edge plasma transport simulations for strong injection of lithium (Li) in the divertor region of a tokamak. The model includes the scrape-off layer and divertor regions, and, for 2D, a small region inside the magnetic separtrix. Equations are solved for the density and momentum of a deuterium/tritium (DT) species and all three charge states of Li, in addition to separate ion and electron energy equations via the UEDGE code. Equations are also included for the DT and Li gas species. Lithium gas is injected from the side walls or divertor plate, implying that these surfaces are evaporating liquid Li. For a range of Li gas input, steady-state, detached-plasma solutions are shown where greater than 90% of the exhaust power is radiated by Li, resulting in peak surface heat fluxes ∼ 2 MW/m2 on the divertor plate, outer wall, and private-flux wall. While Li ions dominate in the divertor leg, their density is in the range of 10% of the DT density at the midplane. The collisional parallel thermal force plays a key role in determining the midplane ion Li density, and sensitivity of results to different model assumptions are discussed. Here the key issue is possible dilution of the core DT fuel. A brief comparison of the Li neutral solution is made with that from the Direct Simulation Monte-Carlo (DSMC) SPARTA code. Keywords: Divertor modeling, Lithium, Plasma detachment, UEDGE, FNSF, 2010 MSC: 00-01, 99-00
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV T.D. Rognlien; M.E. Rensink; E. Emdee; R.J. Goldston; J. Schwartz; D.P. Stotler;Results are presented for one- and two-dimensional (2D) edge plasma transport simulations for strong injection of lithium (Li) in the divertor region of a tokamak. The model includes the scrape-off layer and divertor regions, and, for 2D, a small region inside the magnetic separtrix. Equations are solved for the density and momentum of a deuterium/tritium (DT) species and all three charge states of Li, in addition to separate ion and electron energy equations via the UEDGE code. Equations are also included for the DT and Li gas species. Lithium gas is injected from the side walls or divertor plate, implying that these surfaces are evaporating liquid Li. For a range of Li gas input, steady-state, detached-plasma solutions are shown where greater than 90% of the exhaust power is radiated by Li, resulting in peak surface heat fluxes ∼ 2 MW/m2 on the divertor plate, outer wall, and private-flux wall. While Li ions dominate in the divertor leg, their density is in the range of 10% of the DT density at the midplane. The collisional parallel thermal force plays a key role in determining the midplane ion Li density, and sensitivity of results to different model assumptions are discussed. Here the key issue is possible dilution of the core DT fuel. A brief comparison of the Li neutral solution is made with that from the Direct Simulation Monte-Carlo (DSMC) SPARTA code. Keywords: Divertor modeling, Lithium, Plasma detachment, UEDGE, FNSF, 2010 MSC: 00-01, 99-00
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hiroaki Abe; Hiroaki Abe; Yuhki Satoh; Huilong Yang; Sho Kano; Hisashi Serizawa; Yoshitaka Matsukawa; Hideo Sakasegawa; A. Oba; Hiroyasu Tanigawa;AbstractThis study investigates the microstructure and mechanical property in heat affected zone (HAZ) between F82H and SUS316L jointed by 4 kW fiber laser welding at different parameters such as laser scan rate and beam position. OM/FE-SEM observation, EPMA analysis and nano-indentation hardness test were utilized to characterize the microstructure and evaluate the mechanical property. Results show that the HAZ width is dependent on the welding condition. The precipitation of M23C6 particle in HAZ is found to be closely related to the distance from WM/HAZ interface. Decrease in Cr and C concentration in M23C6 depended on the welding condition; the decrease was relatively milder in the case of shifting the beam position to SUS side. Furthermore, the rapid increment in nano-indentation hardness, i.e. ≈2500 MPa, at HAZ/F82H interface was observed regardless of welding parameters. The temperatures at HAZ/F82H interface were estimated from Cr and C concentration change of M23C6 by EPMA. It was revealed that the temperature of HAZ/F82H interface increased with increasing HAZ width, and that the presence of over-tempered HAZ (THAZ) region is confirmed only in the specimens welded right on the F82H/SUS interface (no-shift) at the laser scan rate of 3 m/min.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hiroaki Abe; Hiroaki Abe; Yuhki Satoh; Huilong Yang; Sho Kano; Hisashi Serizawa; Yoshitaka Matsukawa; Hideo Sakasegawa; A. Oba; Hiroyasu Tanigawa;AbstractThis study investigates the microstructure and mechanical property in heat affected zone (HAZ) between F82H and SUS316L jointed by 4 kW fiber laser welding at different parameters such as laser scan rate and beam position. OM/FE-SEM observation, EPMA analysis and nano-indentation hardness test were utilized to characterize the microstructure and evaluate the mechanical property. Results show that the HAZ width is dependent on the welding condition. The precipitation of M23C6 particle in HAZ is found to be closely related to the distance from WM/HAZ interface. Decrease in Cr and C concentration in M23C6 depended on the welding condition; the decrease was relatively milder in the case of shifting the beam position to SUS side. Furthermore, the rapid increment in nano-indentation hardness, i.e. ≈2500 MPa, at HAZ/F82H interface was observed regardless of welding parameters. The temperatures at HAZ/F82H interface were estimated from Cr and C concentration change of M23C6 by EPMA. It was revealed that the temperature of HAZ/F82H interface increased with increasing HAZ width, and that the presence of over-tempered HAZ (THAZ) region is confirmed only in the specimens welded right on the F82H/SUS interface (no-shift) at the laser scan rate of 3 m/min.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionMatthias Komm; Olivier Février; M. Wensing; Joaquim Loizu; Christian Theiler; C.K. Tsui; D. Brida; M. Wischmeier; B. P. Duval; S. S. Henderson; Tcv Team; H. De Oliveira; C. Colandrea; A. Smolders; S. Gorno; H. Reimerdes; EUROfusion Mst Team;Recent TCV experiments confirm the predicted formation of an electric potential well, below the magnetic X-point, in configurations with unfavorable Btfield direction (ion ∇Bdrift away from the divertor), that substantially reshapes the typical divertor E×Bflow pattern. The local charge balance ∇⋅jin the private flux region (PFR) of diverted tokamak plasmas has been previously argued to be dominated by parallel and diamagnetic currents. This hypothesis is tested herein in TCV discharges by comparison with SOLPS-ITER simulations, fully accounting for drifts and currents. Simulated parallel currents correctly capture measured current profile characteristics for both targets and both Bt-directions, whereas those omitting drifts fail. It is shown that the resulting parallel currents dictate the electric fields in the PFR for low temperature (detached divertor) conditions resulting in locally negative electric plasma potential in configurations with unfavorable H-mode access.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionMatthias Komm; Olivier Février; M. Wensing; Joaquim Loizu; Christian Theiler; C.K. Tsui; D. Brida; M. Wischmeier; B. P. Duval; S. S. Henderson; Tcv Team; H. De Oliveira; C. Colandrea; A. Smolders; S. Gorno; H. Reimerdes; EUROfusion Mst Team;Recent TCV experiments confirm the predicted formation of an electric potential well, below the magnetic X-point, in configurations with unfavorable Btfield direction (ion ∇Bdrift away from the divertor), that substantially reshapes the typical divertor E×Bflow pattern. The local charge balance ∇⋅jin the private flux region (PFR) of diverted tokamak plasmas has been previously argued to be dominated by parallel and diamagnetic currents. This hypothesis is tested herein in TCV discharges by comparison with SOLPS-ITER simulations, fully accounting for drifts and currents. Simulated parallel currents correctly capture measured current profile characteristics for both targets and both Bt-directions, whereas those omitting drifts fail. It is shown that the resulting parallel currents dictate the electric fields in the PFR for low temperature (detached divertor) conditions resulting in locally negative electric plasma potential in configurations with unfavorable H-mode access.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Si Thu Kyaw; Si Thu Kyaw; Wei Sun; Atheer Saad Hashim; Atheer Saad Hashim;The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1, 2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM) is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Si Thu Kyaw; Si Thu Kyaw; Wei Sun; Atheer Saad Hashim; Atheer Saad Hashim;The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1, 2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM) is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://nottingham-repository.worktribe.com/file/855626/1/1-s2.0-S2352179117300017-main.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.03.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Masayuki Ohta; Hiromitsu Suzuki; Satoshi Sato; Saerom Kwon; Kentaro Ochiai;A plan of an advanced fusion neutron source (A-FNS) by using d-Li reaction is in progress at Rokkasho in Japan. We investigate multipurpose usages of the A-FNS in addition to fusion material irradiation test. Production of medical isotope 99Mo is considered as one of the usages. We conducted a conceptual study on a module for radioisotope production which was composed of a neutron spectrum shifter and a neutron reflector. We examined impacts of materials of the shifter and reflector on amounts of the 99Mo production, and their thicknesses. It was concluded that beryllium is the most suitable material both for the shifter and the reflector from the viewpoint of the 99Mo production. It was shown that we produced an enough amount of the 99Mo for the demand in Japan. We can apply natural molybdenum for this purpose. It was also shown that we could use a part of irradiation capsules in high flux test module, which was for the fusion material irradiation test originally, by using isotopically enriched 100Mo to meet that. Keywords: d-Li reaction, Fusion neutron source, Medical isotope, 98Mo(n,γ)99Mo, 100Mo(n,2n)99Mo, A-FNS
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Masayuki Ohta; Hiromitsu Suzuki; Satoshi Sato; Saerom Kwon; Kentaro Ochiai;A plan of an advanced fusion neutron source (A-FNS) by using d-Li reaction is in progress at Rokkasho in Japan. We investigate multipurpose usages of the A-FNS in addition to fusion material irradiation test. Production of medical isotope 99Mo is considered as one of the usages. We conducted a conceptual study on a module for radioisotope production which was composed of a neutron spectrum shifter and a neutron reflector. We examined impacts of materials of the shifter and reflector on amounts of the 99Mo production, and their thicknesses. It was concluded that beryllium is the most suitable material both for the shifter and the reflector from the viewpoint of the 99Mo production. It was shown that we produced an enough amount of the 99Mo for the demand in Japan. We can apply natural molybdenum for this purpose. It was also shown that we could use a part of irradiation capsules in high flux test module, which was for the fusion material irradiation test originally, by using isotopically enriched 100Mo to meet that. Keywords: d-Li reaction, Fusion neutron source, Medical isotope, 98Mo(n,γ)99Mo, 100Mo(n,2n)99Mo, A-FNS
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.05.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors: Shams-Latifi, Jila; Pitthan, Eduardo; Mika Wolf, Philipp; Primetzhofer, Daniel;The experimental electronic stopping cross-section of tungsten for low-energy protons, deuterons, and helium ions is deduced from backscattering experiments from thin films and bulk using time-of-flight low-energy ion scattering (ToF-LEIS). Two complementary experimental approaches showed consistent results in the energy ranges of 0.3–10 keV for protons, 0.33–10 keV for deuterons, and 0.7–10 keV for He+ ions. In relative measurements, a Au sample was used as the reference, while in absolute energy loss measurements, sputter-deposited thin films of tungsten on carbon substrates were employed. The experimental energy-converted spectra were compared to Monte-Carlo simulations in both approaches for quantitative analysis taking the influence of plural and multiple scattering into account. The results show proportionality to the ion velocity. We discuss the present datasets in comparison to semiempirical modelling and predictions from theory.
Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors: Shams-Latifi, Jila; Pitthan, Eduardo; Mika Wolf, Philipp; Primetzhofer, Daniel;The experimental electronic stopping cross-section of tungsten for low-energy protons, deuterons, and helium ions is deduced from backscattering experiments from thin films and bulk using time-of-flight low-energy ion scattering (ToF-LEIS). Two complementary experimental approaches showed consistent results in the energy ranges of 0.3–10 keV for protons, 0.33–10 keV for deuterons, and 0.7–10 keV for He+ ions. In relative measurements, a Au sample was used as the reference, while in absolute energy loss measurements, sputter-deposited thin films of tungsten on carbon substrates were employed. The experimental energy-converted spectra were compared to Monte-Carlo simulations in both approaches for quantitative analysis taking the influence of plural and multiple scattering into account. The results show proportionality to the ion velocity. We discuss the present datasets in comparison to semiempirical modelling and predictions from theory.
Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Muhammad Imran; Zhenhua Hu; Fang Ding; Muhammad Salman Khan; Guang-Nan Luo; Ali Farooq; Imtiaz Ahmad;Laser-induced breakdown spectroscopy (LIBS) was employed for the depth-resolved identification of impurities deposited on the small test tiles used in the experimental advanced superconducting tokamak (EAST). LIBS spectra show the impurity elements of molybdenum (Mo), tungsten (W), carbon (C), copper (Cu), lithium (Li), titanium (Ti), silicon (Si), iron (Fe), and chromium (Cr) in the impurity deposition on the test tiles used in the EAST. The analysis of impurities was performed at various spot positions on the surfaces of the tiles. The impurity deposition is the final destination of the migrating eroded materials in the EAST. The interaction of high-heat plasma with the plasma-facing components (PFCs) causes the erosion of W upper and lower divertors, Mo main wall, the doped graphite (C, Si & Ti) limiters, Li wall conditioning, and CuCrZr heat conductors. Surface morphology was performed by using the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). Depth profile analysis showed the thickness of impurity deposition is in fractions of micrometers because the impurity signals appeared just in a few laser shots. The spectral intensity of impurity was observed differently during the consecutive laser shots on various spot positions that showed the impurity deposition is uneven on the tiles’ surfaces.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Muhammad Imran; Zhenhua Hu; Fang Ding; Muhammad Salman Khan; Guang-Nan Luo; Ali Farooq; Imtiaz Ahmad;Laser-induced breakdown spectroscopy (LIBS) was employed for the depth-resolved identification of impurities deposited on the small test tiles used in the experimental advanced superconducting tokamak (EAST). LIBS spectra show the impurity elements of molybdenum (Mo), tungsten (W), carbon (C), copper (Cu), lithium (Li), titanium (Ti), silicon (Si), iron (Fe), and chromium (Cr) in the impurity deposition on the test tiles used in the EAST. The analysis of impurities was performed at various spot positions on the surfaces of the tiles. The impurity deposition is the final destination of the migrating eroded materials in the EAST. The interaction of high-heat plasma with the plasma-facing components (PFCs) causes the erosion of W upper and lower divertors, Mo main wall, the doped graphite (C, Si & Ti) limiters, Li wall conditioning, and CuCrZr heat conductors. Surface morphology was performed by using the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). Depth profile analysis showed the thickness of impurity deposition is in fractions of micrometers because the impurity signals appeared just in a few laser shots. The spectral intensity of impurity was observed differently during the consecutive laser shots on various spot positions that showed the impurity deposition is uneven on the tiles’ surfaces.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2020 SpainPublisher:Elsevier BV Funded by:EC | ESTEEM 2EC| ESTEEM 2Authors: Scepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; +3 AuthorsScepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; Hugenschmidt, C.; Auger, María A.; Castro Bernal, María Vanessa de;Oxide dispersion strengthened steels are candidate materials for nuclear reactor applications due to a powerful combination of properties, such as reduced activation, high-temperature strength and increased creep resistance. The dispersion of nanometric oxide particles in the steel matrix may also enhance radiation resistance by acting as trapping sites for irradiation induced defects. In this work, an Fe-14Cr-2 W-0.3-Ti-0.3Y2O3 (wt%) steel and a model Fe-14Cr (wt%) alloy were sequentially irradiated with He+ and Fe+ ions up to 15 dpa and 8000 appm to simulate fusion radiation damage. Their microstructural stability was investigated by positron annihilation spectroscopy and transmission electron microscopy. Transmission electron microscopy studies show that under these irradiation conditions there are no significant changes in the mean size, qualitative chemical composition and number density of nanoparticles, although the irradiation appears to induce a slight coarsening of the smaller nanoparticles. Both materials exhibit very small (<2 nm) irradiation-induced bubbles, with similar sizes but lower number density in the ODS steel. Positron annihilation spectroscopy results show the presence of irradiation induced open volume defects, much more noticeable in the model alloy. In both alloys, helium appears to associate with the newly formed vacancy-type defects introduced by the subsequent Fe+ irradiation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 24 Powered bymore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other ORP type 2020 SpainPublisher:Elsevier BV Funded by:EC | ESTEEM 2EC| ESTEEM 2Authors: Scepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; +3 AuthorsScepanovic, Masa; Leguey Galán, Teresa; Garcia-Cortes, I.; Sanchez, Fernando Jose; Hugenschmidt, C.; Auger, María A.; Castro Bernal, María Vanessa de;Oxide dispersion strengthened steels are candidate materials for nuclear reactor applications due to a powerful combination of properties, such as reduced activation, high-temperature strength and increased creep resistance. The dispersion of nanometric oxide particles in the steel matrix may also enhance radiation resistance by acting as trapping sites for irradiation induced defects. In this work, an Fe-14Cr-2 W-0.3-Ti-0.3Y2O3 (wt%) steel and a model Fe-14Cr (wt%) alloy were sequentially irradiated with He+ and Fe+ ions up to 15 dpa and 8000 appm to simulate fusion radiation damage. Their microstructural stability was investigated by positron annihilation spectroscopy and transmission electron microscopy. Transmission electron microscopy studies show that under these irradiation conditions there are no significant changes in the mean size, qualitative chemical composition and number density of nanoparticles, although the irradiation appears to induce a slight coarsening of the smaller nanoparticles. Both materials exhibit very small (<2 nm) irradiation-induced bubbles, with similar sizes but lower number density in the ODS steel. Positron annihilation spectroscopy results show the presence of irradiation induced open volume defects, much more noticeable in the model alloy. In both alloys, helium appears to associate with the newly formed vacancy-type defects introduced by the subsequent Fe+ irradiation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 24 Powered bymore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad Carlos III de MadridArticle . 2020License: CC BY NC NDRepositorio Institucional de la Universidad Carlos III de MadridOther ORP type . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiazi Xiao; Long Yu;Abstract Ion irradiation offers a promising strategy to emulate the irradiation damage induced by energetic neutrons. However, the characterization of the mechanical properties of ion-irradiated materials is not easy considering the limited irradiation depth and inhomogeneous distribution of irradiation-induced defects. Over the last decades, nano-indentation has been recognized as a valid technique to investigate the localized mechanical responses at micro-scale. Therefore, the combination of ion irradiation and nano-indentation has been extensively developed in recent years to study the mechanical behaviors of nuclear structural materials with irradiation effect. In this review, current developments of experimental observations, numerical simulations and theoretical models are summarized concerning both microstructural evolution and macroscopic deformation. Corresponding analysis and discussion could help obtain a sophisticated comprehension of the fundamental deformation mechanisms resulting in mechanical degradation of ion-irradiated materials, and further assist the development of next-generation nuclear structural materials.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Xiazi Xiao; Long Yu;Abstract Ion irradiation offers a promising strategy to emulate the irradiation damage induced by energetic neutrons. However, the characterization of the mechanical properties of ion-irradiated materials is not easy considering the limited irradiation depth and inhomogeneous distribution of irradiation-induced defects. Over the last decades, nano-indentation has been recognized as a valid technique to investigate the localized mechanical responses at micro-scale. Therefore, the combination of ion irradiation and nano-indentation has been extensively developed in recent years to study the mechanical behaviors of nuclear structural materials with irradiation effect. In this review, current developments of experimental observations, numerical simulations and theoretical models are summarized concerning both microstructural evolution and macroscopic deformation. Corresponding analysis and discussion could help obtain a sophisticated comprehension of the fundamental deformation mechanisms resulting in mechanical degradation of ion-irradiated materials, and further assist the development of next-generation nuclear structural materials.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.100721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.;AbstractOne of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A=245MW/m2, B=708MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Elsevier BV Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.;AbstractOne of the numerous challenges of the demonstration power plant DEMO is the selection of appropriate plasma facing materials (PFMs) and this task is ultimately important to the success for DEMO. Low-activation stainless steel (e.g. EUROFER, P92), which is already intended as structural material, could also become a possible plasma facing material, e.g. for the first wall (FW). Therefore, the ferritic martensitic steel P92 was investigated under DEMO relevant loading conditions. An area of the sample surfaces was firstly molten by transient events with varying power densities (A=245MW/m2, B=708MW/m2) and afterwards simultaneously and sequentially exposed to thermal and particle loads. Surface modifications and pronounced microstructure changes were investigated dependent on the pre-exposure, loading sequence and power density. More precisely, it turned out that there was no connection between the loading sequence and the surface modifications for the preloaded A-samples contrary to preloaded B-samples. The preloaded B-samples exhibited surface roughening, melting and the formation of holes dependent on the loading sequence and power density.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV T.D. Rognlien; M.E. Rensink; E. Emdee; R.J. Goldston; J. Schwartz; D.P. Stotler;Results are presented for one- and two-dimensional (2D) edge plasma transport simulations for strong injection of lithium (Li) in the divertor region of a tokamak. The model includes the scrape-off layer and divertor regions, and, for 2D, a small region inside the magnetic separtrix. Equations are solved for the density and momentum of a deuterium/tritium (DT) species and all three charge states of Li, in addition to separate ion and electron energy equations via the UEDGE code. Equations are also included for the DT and Li gas species. Lithium gas is injected from the side walls or divertor plate, implying that these surfaces are evaporating liquid Li. For a range of Li gas input, steady-state, detached-plasma solutions are shown where greater than 90% of the exhaust power is radiated by Li, resulting in peak surface heat fluxes ∼ 2 MW/m2 on the divertor plate, outer wall, and private-flux wall. While Li ions dominate in the divertor leg, their density is in the range of 10% of the DT density at the midplane. The collisional parallel thermal force plays a key role in determining the midplane ion Li density, and sensitivity of results to different model assumptions are discussed. Here the key issue is possible dilution of the core DT fuel. A brief comparison of the Li neutral solution is made with that from the Direct Simulation Monte-Carlo (DSMC) SPARTA code. Keywords: Divertor modeling, Lithium, Plasma detachment, UEDGE, FNSF, 2010 MSC: 00-01, 99-00
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV T.D. Rognlien; M.E. Rensink; E. Emdee; R.J. Goldston; J. Schwartz; D.P. Stotler;Results are presented for one- and two-dimensional (2D) edge plasma transport simulations for strong injection of lithium (Li) in the divertor region of a tokamak. The model includes the scrape-off layer and divertor regions, and, for 2D, a small region inside the magnetic separtrix. Equations are solved for the density and momentum of a deuterium/tritium (DT) species and all three charge states of Li, in addition to separate ion and electron energy equations via the UEDGE code. Equations are also included for the DT and Li gas species. Lithium gas is injected from the side walls or divertor plate, implying that these surfaces are evaporating liquid Li. For a range of Li gas input, steady-state, detached-plasma solutions are shown where greater than 90% of the exhaust power is radiated by Li, resulting in peak surface heat fluxes ∼ 2 MW/m2 on the divertor plate, outer wall, and private-flux wall. While Li ions dominate in the divertor leg, their density is in the range of 10% of the DT density at the midplane. The collisional parallel thermal force plays a key role in determining the midplane ion Li density, and sensitivity of results to different model assumptions are discussed. Here the key issue is possible dilution of the core DT fuel. A brief comparison of the Li neutral solution is made with that from the Direct Simulation Monte-Carlo (DSMC) SPARTA code. Keywords: Divertor modeling, Lithium, Plasma detachment, UEDGE, FNSF, 2010 MSC: 00-01, 99-00
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hiroaki Abe; Hiroaki Abe; Yuhki Satoh; Huilong Yang; Sho Kano; Hisashi Serizawa; Yoshitaka Matsukawa; Hideo Sakasegawa; A. Oba; Hiroyasu Tanigawa;AbstractThis study investigates the microstructure and mechanical property in heat affected zone (HAZ) between F82H and SUS316L jointed by 4 kW fiber laser welding at different parameters such as laser scan rate and beam position. OM/FE-SEM observation, EPMA analysis and nano-indentation hardness test were utilized to characterize the microstructure and evaluate the mechanical property. Results show that the HAZ width is dependent on the welding condition. The precipitation of M23C6 particle in HAZ is found to be closely related to the distance from WM/HAZ interface. Decrease in Cr and C concentration in M23C6 depended on the welding condition; the decrease was relatively milder in the case of shifting the beam position to SUS side. Furthermore, the rapid increment in nano-indentation hardness, i.e. ≈2500 MPa, at HAZ/F82H interface was observed regardless of welding parameters. The temperatures at HAZ/F82H interface were estimated from Cr and C concentration change of M23C6 by EPMA. It was revealed that the temperature of HAZ/F82H interface increased with increasing HAZ width, and that the presence of over-tempered HAZ (THAZ) region is confirmed only in the specimens welded right on the F82H/SUS interface (no-shift) at the laser scan rate of 3 m/min.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hiroaki Abe; Hiroaki Abe; Yuhki Satoh; Huilong Yang; Sho Kano; Hisashi Serizawa; Yoshitaka Matsukawa; Hideo Sakasegawa; A. Oba; Hiroyasu Tanigawa;AbstractThis study investigates the microstructure and mechanical property in heat affected zone (HAZ) between F82H and SUS316L jointed by 4 kW fiber laser welding at different parameters such as laser scan rate and beam position. OM/FE-SEM observation, EPMA analysis and nano-indentation hardness test were utilized to characterize the microstructure and evaluate the mechanical property. Results show that the HAZ width is dependent on the welding condition. The precipitation of M23C6 particle in HAZ is found to be closely related to the distance from WM/HAZ interface. Decrease in Cr and C concentration in M23C6 depended on the welding condition; the decrease was relatively milder in the case of shifting the beam position to SUS side. Furthermore, the rapid increment in nano-indentation hardness, i.e. ≈2500 MPa, at HAZ/F82H interface was observed regardless of welding parameters. The temperatures at HAZ/F82H interface were estimated from Cr and C concentration change of M23C6 by EPMA. It was revealed that the temperature of HAZ/F82H interface increased with increasing HAZ width, and that the presence of over-tempered HAZ (THAZ) region is confirmed only in the specimens welded right on the F82H/SUS interface (no-shift) at the laser scan rate of 3 m/min.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionMatthias Komm; Olivier Février; M. Wensing; Joaquim Loizu; Christian Theiler; C.K. Tsui; D. Brida; M. Wischmeier; B. P. Duval; S. S. Henderson; Tcv Team; H. De Oliveira; C. Colandrea; A. Smolders; S. Gorno; H. Reimerdes; EUROfusion Mst Team;Recent TCV experiments confirm the predicted formation of an electric potential well, below the magnetic X-point, in configurations with unfavorable Btfield direction (ion ∇Bdrift away from the divertor), that substantially reshapes the typical divertor E×Bflow pattern. The local charge balance ∇⋅jin the private flux region (PFR) of diverted tokamak plasmas has been previously argued to be dominated by parallel and diamagnetic currents. This hypothesis is tested herein in TCV discharges by comparison with SOLPS-ITER simulations, fully accounting for drifts and currents. Simulated parallel currents correctly capture measured current profile characteristics for both targets and both Bt-directions, whereas those omitting drifts fail. It is shown that the resulting parallel currents dictate the electric fields in the PFR for low temperature (detached divertor) conditions resulting in locally negative electric plasma potential in configurations with unfavorable H-mode access.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionMatthias Komm; Olivier Février; M. Wensing; Joaquim Loizu; Christian Theiler; C.K. Tsui; D. Brida; M. Wischmeier; B. P. Duval; S. S. Henderson; Tcv Team; H. De Oliveira; C. Colandrea; A. Smolders; S. Gorno; H. Reimerdes; EUROfusion Mst Team;Recent TCV experiments confirm the predicted formation of an electric potential well, below the magnetic X-point, in configurations with unfavorable Btfield direction (ion ∇Bdrift away from the divertor), that substantially reshapes the typical divertor E×Bflow pattern. The local charge balance ∇⋅jin the private flux region (PFR) of diverted tokamak plasmas has been previously argued to be dominated by parallel and diamagnetic currents. This hypothesis is tested herein in TCV discharges by comparison with SOLPS-ITER simulations, fully accounting for drifts and currents. Simulated parallel currents correctly capture measured current profile characteristics for both targets and both Bt-directions, whereas those omitting drifts fail. It is shown that the resulting parallel currents dictate the electric fields in the PFR for low temperature (detached divertor) conditions resulting in locally negative electric plasma potential in configurations with unfavorable H-mode access.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu