- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Spanish National Research Council
- Energy Research
- 12. Responsible consumption
- Spanish National Research Council
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Wiley Authors: Falco, Camillo; Sieben, Juan Manuel;Brun, Nicolas;
Sevilla Solís, Marta; +4 AuthorsBrun, Nicolas
Brun, Nicolas in OpenAIREFalco, Camillo; Sieben, Juan Manuel;Brun, Nicolas;
Sevilla Solís, Marta; Van der Mauelen, Torbjorn;Brun, Nicolas
Brun, Nicolas in OpenAIREMorallon, Emilia;
Cazorla-Amorós, Diego;Morallon, Emilia
Morallon, Emilia in OpenAIRETitirici, Maria-Magdalena;
Titirici, Maria-Magdalena
Titirici, Maria-Magdalena in OpenAIREAbstractAcid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by‐products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose‐derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard‐templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH‐activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.
ChemSusChem arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2013Data sources: Repositorio Institucional de la Universidad de AlicanteChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201200817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 171 citations 171 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 24visibility views 24 download downloads 122 Powered bymore_vert ChemSusChem arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2013Data sources: Repositorio Institucional de la Universidad de AlicanteChemSusChemArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201200817&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Remón, Javier; Casales, Marina; Gracia Soguero, Jesús;Callén Romero, Mª Soledad;
+2 AuthorsCallén Romero, Mª Soledad
Callén Romero, Mª Soledad in OpenAIRERemón, Javier; Casales, Marina; Gracia Soguero, Jesús;Callén Romero, Mª Soledad;
Pinilla Ibarz, José Luis; Suelves Laiglesia, Isabel;Callén Romero, Mª Soledad
Callén Romero, Mª Soledad in OpenAIREhandle: 10261/219176
4 figures, 6 tables.-- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ For the first time, this work addresses the hydrodeoxygenation (HDO) of lignocellulosic bio-oil over a carbon–neutral Mo2C/CNF catalyst for the production of liquid biofuels and value-added chemicals, thoroughly examining the effect of the temperature, initial H2 pressure, reaction time and catalyst/bio-oil ratio. These variables had a significant influence on the process, allowing the transformation of the original bio-oil into different fractions in varying yields, including an upgraded bio-oil (17–72%), a solid product (4–44%), an aqueous phase (5–39%) and a gaseous stream (1–15%). The upgraded bio-oil comprised a mix of phenols (56–78%), cyclic ketones (7–30%), carboxylic acids (2–8%), esters (0–9%) and aromatic compounds (0–20%). The relative amounts of C, H and O of this product shifted by 34–78 wt%, 3–8 wt% and 13–62 wt%, while its HHV ranged between 9 and 35 MJ/kg. Process optimisation revealed that using a temperature of 350 °C, an initial H2 pressure of 40 bar and 0.19 g cat/g bio-oil for 1 h, it was possible to convert 65% of the organic content of the bio-oil into a liquid bio-fuel with a HHV of 30 MJ/kg (twice the value of the original feedstock), which represents a deoxygenation degree of 70% and an energy efficiency of 62%. Besides, all the bio-oil organic content can be converted into a liquid product with a high proportion of phenols (79%) at 250 °C, applying an initial H2 pressure of 20 bar and 0.14 g cat/g bio-oil for around 0.5 h. This liquid can be used as a sustainable phenolic-rich antioxidant additive as well as a bio-based source of aromatic compounds. Therefore, these results are a step forward in the biomass conversion over carbon–neutral catalysts. This work was funded by FEDER and the Spanish Economy and Competitiveness Ministry (ENE 2017-83854-R). Javier Remón and Jesús Gracia would like to express their gratitude to the “Ministerio de Ciencia, Innovación y Universidades” for their JdC (FJCI-2016-30847 and IJC2018-037110-I) and FPI (PRE2018-085182) fellowships, respectively awarded. Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 27visibility views 27 download downloads 91 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.126705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors:Cuesta-García, Ana María;
Ayuela, Andrés; García-Aranda, Miguel Ángel;Cuesta-García, Ana María
Cuesta-García, Ana María in OpenAIREhandle: 10261/250337 , 10630/20560
Belite cements, BCs, containing mainly belite, alite and calcium aluminates, are currently used as low heat cements. These binders produce high amounts of C–S–H gel and have very good durability properties which are reviewed. Additional advantages include: (i) lower limestone demand, with lower associated CO2 emissions; (ii) lower energy demand; (iii) lower kiln operating temperature, which means lowering CO2 and NOx emissions from fuel burning; and (iv) lower temperature increase at early hydration age. However, early-age strength developments are not competitive with those of Portland cements. Hence, to improve their early-age strength developments is a research priority known as activation. This enhancement can be attained by three compatible approaches: (i) chemical, (ii) physical; and (iii) admixture activations. The current research status for BCs activation is reviewed including: cost-effective element substitutions to stabilize high-temperature forms; fast cooling, milling and mild temperature hydration as physical activation; and the use of C–S–H seeds as admixture activation. After discussion of the resulting microstructures, a research outlook is exercised. The work in Malaga has been supported by BIA2017-82391-R research grant, which is co-funded by FEDER. The work in San Sebastian was supported by PID2019-105488GB-I00 research grant, the Gobierno Vasco UPV/EHU (Project No. IT-1246-19), and the EIG CONCERT-Japan 5th Joint Call on Functional Porous Materials (Project No. PCI2019- 103657-POROPCM). We thank Buzzi Unicem for providing us with more than 30 kg of a large-scale production of an active belite cement. We also thank Fulvio Canonico (Buzzi Unicem) for very helpful discussions about industrial aspects of belite cements.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACement and Concrete ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRIUMA - Repositorio Institucional de la Universidad de MálagaArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cemconres.2020.106319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 29visibility views 29 download downloads 35 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACement and Concrete ResearchArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRIUMA - Repositorio Institucional de la Universidad de MálagaArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cemconres.2020.106319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Jun-Woo Yang;Deogratius Luyima;
Seong-Jin Park; Seong-Heon Kim; +1 AuthorsDeogratius Luyima
Deogratius Luyima in OpenAIREJun-Woo Yang;Deogratius Luyima;
Seong-Jin Park; Seong-Heon Kim; Taek-Keun Oh;Deogratius Luyima
Deogratius Luyima in OpenAIREdoi: 10.3390/su132313223
Food waste generated at the consumer level constitutes a gigantic portion of the total amount of food wasted/lost and valorisation is touted as the most sustainable way of managing the generated waste. While food waste valorisation encompasses several methods, composting is the cheapest technique that can produce stabilised carbon-rich soil amendments. The food waste generated at the consumer level, however, is laden with sodium chloride. The compost produced from such waste has the potential of inducing saline and or sodic conditions in the soil, resultantly impeding proper crop growth and yield. Due to the scarcity of plausible means of eradicating sodium chloride from the food waste before composting, the idea of mixing the composted food waste with other low sodium chloride-containing composts to produce a food waste compost-containing amalgam with a high fertiliser potential was mulled in this study. The study then assessed the effects of mixing sodium-chloride-rich food waste compost with the nutritious and low sodium chloride-containing livestock manure composts on the yield and quality of leaf lettuce. Mixing food waste compost with livestock manure composts in the right proportions created mixed composts that produced a higher lettuce yield than both the pure livestock manure composts and food waste compost. The mixed composts also produced leaf lettuce with higher chlorophyll content and, thus, better marketability and lower nitrate content (with higher health value) than the pure livestock manure composts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors:López Gómez, Félix Antonio;
López Gómez, Félix Antonio
López Gómez, Félix Antonio in OpenAIREPérez, Carlos;
Pérez, Carlos
Pérez, Carlos in OpenAIREGarcía-Díaz, Irene;
Alguacil, Francisco José;García-Díaz, Irene
García-Díaz, Irene in OpenAIREThis work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2015.06.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:American Chemical Society (ACS) Authors: Sandra Rodríguez-Sánchez;Begoña Ruiz;
David Martínez-Blanco; María Sánchez-Arenillas; +5 AuthorsBegoña Ruiz
Begoña Ruiz in OpenAIRESandra Rodríguez-Sánchez;Begoña Ruiz;
David Martínez-Blanco; María Sánchez-Arenillas;Begoña Ruiz
Begoña Ruiz in OpenAIREMaria A. Diez;
Isabel Suárez-Ruiz; Jose Francisco Marco;Maria A. Diez
Maria A. Diez in OpenAIREJesus Blanco;
Jesus Blanco
Jesus Blanco in OpenAIREEnrique Fuente;
Enrique Fuente
Enrique Fuente in OpenAIREhandle: 10261/206734
The financial support for this work was provided by the Plan Nacional, Ministerio de Economía y Competitividad of Spain: PN (MINECO), under the Project CTM2014-58435-C2-1-R.
ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 126 Powered bymore_vert ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:UK Zhende Publishing Limited Company Authors: Gavira Galocha, María Jesús; Pérez, Gloria; Acha-Román, Consolación;doi: 10.6036/8487
handle: 10261/211512
There are different technologies to optimize the use of solar energy in construction systems, with the aim of improving the building energy efficiency and also to reduce the effect of solar radiation on the exterior coatings, which in turn affects the urban areas warming. Among these technologies, chromogenic devices based on materials whose optical properties can be reversibly modified by some external stimulus have become relevant. These materials are especially interesting because they adapt to variations of solar radiation during the day and throughout the different seasons of the year. The facade coating may have different types of texture or color, which determine specific optical properties. One of these properties is the absorptance, which determines the amount of solar radiation absorbed by the material with respect to the incident radiation. The effect of the absorptance on the building energy demand will be conditioned by other parameters that also influence it, such as the climatic zone, orientation and thermal properties of the wall. In the work presented, the influence of the optical properties of three types of exterior facade coating on the building energy demand is analyzed. The materials chosen for this study are a conventional white Portland cement, a belitic cement synthesized in the laboratory by a process of low energy and low CO2 emissions and a brick representative of a brickwork wall, presenting the first two a more polished finish and clearer colors than the second. The final objective of this study is to determine the parameters that optimize the utilization of the optical properties of the studied coatings in the building energy efficiency.
DYNA INGENIERIA E IN... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/8487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 112 Powered bymore_vert DYNA INGENIERIA E IN... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6036/8487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG doi: 10.3390/w8060253
Worldwide, demand for water, energy, and food are on the rise due to population and industrial growth. Because of such increasing demands and in spite of the limitedness of key resources, more efficient ways to meet these demands become obligatory. Especially considering the multiple interlinkages between water, energy, and food/livelihood systems, an integrated management of key resources such as water, land, and energy deems essential for realizing synergetic efficiencies, for consistent policy decisions, and for sustainable development, in particular across the river basins of the world. Therefore, the general framework of a system-wide economic-water-energy model (SEWEM), which is applicable across river basins and adjustable to different spatial scales such as sub-catchments, is presented here to meet the demands for an effective analytical tool in dealing with water-energy-food/livelihood nexus challenges. Previous hydro-economic models often ignored energy requirements, for instance, for irrigation water supply, as well as energy supply constraints, which recurrently might have led to an overestimation of the optimal levels of ground and surface water uses. The SEWEM was developed to address this gap and analyze how optimal levels of surface and groundwater uses, as well as on irrigation and power production benefits, change in response to the consideration of energy supply constraints and energy requirements for water pumping and other agricultural production operations. This is illustrated for the case of the Aral Sea Basin (ASB) in Central Asia, where surface and groundwater supplies heavily depend on pumping and thus on energy availability. The findings underlined the overestimations of optimal water uses by a hydro-economic model that neglects energy constraints. Moreover, geographical conditions have affected the changes in optimal ratios of surface and groundwater uses and water distributions across the river basin when energy restrictions are taken into account. The results confirmed the importance of the consideration of energy constraints for the assessment of optimal water and land uses, and the essential role of an integrated analysis of water, energy, and food/livelihood systems for better-informed policy-making. Despite the added value of the SEWEM that can consider energy system constraints, further fine-tunings would make it even more relevant for addressing additional questions related to basin management. For example, improvements can be expected through considering the system dynamics, ecological aspects, income distribution effects, trade relationships, and institutional restrictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8060253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w8060253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: P. Martín-Zarza; Juan Carlos Ruiz-Morales;P. Esparza;
P. Esparza
P. Esparza in OpenAIREM.E. Borges;
+2 AuthorsM.E. Borges
M.E. Borges in OpenAIREP. Martín-Zarza; Juan Carlos Ruiz-Morales;P. Esparza;
P. Esparza
P. Esparza in OpenAIREM.E. Borges;
M.E. Borges
M.E. Borges in OpenAIREL. Hernández;
José Luis García Fierro;L. Hernández
L. Hernández in OpenAIREThis work deals with the sustainable biodiesel production from low-cost renewable feedstock (waste and non-edible oils) using a heterogeneous catalyst constituted by potassium loaded on an amorphous aluminum silicate naturally occurring as volcanic material (pumice). The main challenge to biodiesel production from low-quality oils (used oils and greases) is the high percentage of free fatty acids (FFAs) and water in the feedstock that causes undesirable side reactions. The catalytic materials studied were tested in the transesterification reaction when using low-quality oils containing a high proportion of free fatty acids (FFAs) and water. Results indicated that the amount of acid and basic sites on the catalytic surface increases upon increasing potassium loading in the catalyst, displaying better performance for biodiesel production. Indeed, the modification of the aluminum silicate substrate upon potassium incorporation results in a catalytic material containing both acidic and basic sites, which are responsible for both triglycerides transesterification and FFA esterification reactions. The studied catalyst not only showed good performance in the biodiesel production reaction but also good tolerance to FFA and water contained in the feedstock for biodiesel production. The catalytic material was microstructured by 3D printing in order to design a catalytic stirring system with high mechanical strength, efficient and reusable. The use of 3D printing in biofuel production is a novelty that brings good solutions for catalyst production.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1399-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1399-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 United States, Chile, Switzerland, Ireland, Germany, ChilePublisher:Wiley Publicly fundedFunded by:NSF | Collaborative Research: T..., ARC | Discovery Projects - Gran..., University College Dublin +8 projectsNSF| Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils ,ARC| Discovery Projects - Grant ID: DP170102766 ,University College Dublin ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,SNSF| ICOS-CH Phase 2 ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological Forecasting ,SNSF| Towards the rational design of molecular glue degraders ,SNSF| Functional diversity and cell-cell communication in biocontrol fluorescent Pseudomonas spp. associated with natural disease- suppressiveness of soils ,ARC| Discovery Projects - Grant ID: DP160102452 ,NSF| Collaborative Research: Effects of Species on Forest Carbon Balances in Lowland Costa Rica ,NSF| Collaborative Research: Tree Species Effects on Ecosystem Processes in Lowland Costa RicaMirco Migliavacca; Christoph S. Vogel; Thomas Wutzler; Russell L. Scott; Mioko Ataka; Jason P. Kaye;Järvi Järveoja;
Järvi Järveoja
Järvi Järveoja in OpenAIREKadmiel Maseyk;
Kadmiel Maseyk
Kadmiel Maseyk in OpenAIREBen Bond-Lamberty;
K. C. Mathes; Joseph Verfaillie;Ben Bond-Lamberty
Ben Bond-Lamberty in OpenAIRECatriona A. Macdonald;
Kentaro Takagi; Jennifer Goedhart Nietz;Catriona A. Macdonald
Catriona A. Macdonald in OpenAIREEric A. Davidson;
Susan E. Trumbore; Melanie A. Mayes; Elise Pendall; Carolyn Monika Görres; Christine S. O’Connell; Christine S. O’Connell; Masahito Ueyama;Eric A. Davidson
Eric A. Davidson in OpenAIRECecilio Oyonarte;
Mats Nilsson; Christopher M. Gough;Cecilio Oyonarte
Cecilio Oyonarte in OpenAIREJorge F. Perez-Quezada;
Mariah S. Carbone;Jorge F. Perez-Quezada
Jorge F. Perez-Quezada in OpenAIRERuth K. Varner;
Omar Gutiérrez del Arroyo;Ruth K. Varner
Ruth K. Varner in OpenAIREJunliang Zou;
Alexandre A. Renchon;Junliang Zou
Junliang Zou in OpenAIRENina Buchmann;
Nina Buchmann
Nina Buchmann in OpenAIREShih-Chieh Chang;
Anya M. Hopple; Anya M. Hopple; Munemasa Teramoto; Stephanie C. Pennington;Shih-Chieh Chang
Shih-Chieh Chang in OpenAIREJin-Sheng He;
Yuji Kominami; Jillian W. Gregg; Enrique P. Sánchez-Cañete;Jin-Sheng He
Jin-Sheng He in OpenAIREJames W. Raich;
Greg Winston; Juying Wu; Ulli Seibt;James W. Raich
James W. Raich in OpenAIREMarguerite Mauritz;
Zhuo Pang;Marguerite Mauritz
Marguerite Mauritz in OpenAIREHamidreza Norouzi;
Peter S. Curtis; Ankur R. Desai;Hamidreza Norouzi
Hamidreza Norouzi in OpenAIRERodrigo Vargas;
Bruce Osborne;Rodrigo Vargas
Rodrigo Vargas in OpenAIREJinsong Wang;
Scott T. Miller;Jinsong Wang
Jinsong Wang in OpenAIREAvni Malhotra;
Asko Noormets;Avni Malhotra
Avni Malhotra in OpenAIREWhendee L. Silver;
Whendee L. Silver
Whendee L. Silver in OpenAIREMark G. Tjoelker;
Tana E. Wood; T. A. Black; Michael Gavazzi; Haiming Kan;Mark G. Tjoelker
Mark G. Tjoelker in OpenAIREMatthias Peichl;
Tarek S. El-Madany; Nadine K. Ruehr; Steve McNulty; H. Hughes; Jiye Zeng; Daphne Szutu;Matthias Peichl
Matthias Peichl in OpenAIRERichard P. Phillips;
Claire L. Phillips;Richard P. Phillips
Richard P. Phillips in OpenAIREWu Sun;
Rachhpal S. Jassal; Patrick M. Crill; Amir AghaKouchak; Quan Zhang; Matthew Saunders; D. S. Christianson;Masahiro Takagi;
Kathleen Savage;Masahiro Takagi
Masahiro Takagi in OpenAIREJinshi Jian;
Jinshi Jian
Jinshi Jian in OpenAIREChelcy Ford Miniat;
Chelcy Ford Miniat
Chelcy Ford Miniat in OpenAIREJohn E. Drake;
Guofang Miao; Samaneh Ashraf; Naishen Liang; Tianshan Zha; Michael L. Goulden;John E. Drake
John E. Drake in OpenAIREMarion Schrumpf;
Marion Schrumpf
Marion Schrumpf in OpenAIRETakashi Hirano;
Takashi Hirano
Takashi Hirano in OpenAIREDebjani Sihi;
Juan J. Armesto; David A. Lipson; M. Altaf Arain; Dennis D. Baldocchi; Hassan Anjileli;Debjani Sihi
Debjani Sihi in OpenAIREdoi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
doi: 10.1111/gcb.15353 , 10.60692/ejg8a-yd340 , 10.5445/ir/1000125998 , 10.3929/ethz-b-000446726 , 10.60692/wvgem-qyh85
pmid: 33026137
pmc: PMC7756728
handle: 10197/12610 , 1959.7/uws:57686
AbstractGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 11download downloads 11 Powered bymore_vert CORE arrow_drop_down University College Dublin: Research Repository UCDArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10197/12610Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidad de Chile: Repositorio académicoArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu