- home
- Advanced Search
- Energy Research
- 2021-2025
- 11. Sustainability
- 12. Responsible consumption
- 8. Economic growth
- Energy Research
- 2021-2025
- 11. Sustainability
- 12. Responsible consumption
- 8. Economic growth
Research data keyboard_double_arrow_right Dataset 2022 United KingdomPublisher:University College London Pullinger, Martin; Few, Jessica; McKenna, Eoghan; Elam, Simon; Webborn, Ellen; Oreszczyn, Tadj;This is a set of aggregated data tables that underly the key figures in the SERL stats report "Smart Energy Research Lab: Energy use in GB domestic buildings 2021" (Volume 1). The report describes domestic gas and electricity energy use in Great Britain in 2021 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. The report shows how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day), with occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | SMARTEESEC| SMARTEESAuthors:Albulescu, Patricia;
Macsinga, Irina; Lauren��iu Gabriel ����ru;Albulescu, Patricia
Albulescu, Patricia in OpenAIRESurvey of Timisoara City residents conducted by the West University of Timisoara for the SMARTEES project between March and August 2020 (n=439). The survey was aimed at (1) understanding individual behaviours related to the environment and energy in general, and (2) assessing how people make decisions about energy efficiency measures in particular (i.e., perceptions about existing regional or national programmes aiming to improve the energy efficiency of homes through upgrades to the building fabric with a neighbourhood-scale heat network retrofit). It includes data about citizens' attitudes, behaviours and social networks. Files include the dataset in two formats: .csv and .sav. The questionnaire, a data dictionary and background and sampling details are also included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5617850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 52visibility views 52 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5617850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Mekiso Yohannes Sido;Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production. Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) Authors: Center For International Earth Science Information Network-CIESIN-Columbia University;doi: 10.7927/d1x1-d702
The Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3 data set contains land areas with urban, quasi-urban, rural, and total populations (counts) within the LECZ for 234 countries and other recognized territories for the years 1990, 2000, and 2015. This data set updates initial estimates for the LECZ population by drawing on a newer collection of input data, and provides a range of estimates for at-risk population and land area. Constructing accurate estimates requires high-quality and methodologically consistent input data, and the LECZv3 evaluates multiple data sources for population totals, digital elevation model, and spatially-delimited urban classifications. Users can find the paper "Estimating Population and Urban Areas at Risk of Coastal Hazards, 1990-2015: How data choices matter" (MacManus, et al. 2021) in order to evaluate selected inputs for modeling Low Elevation Coastal Zones. According to the paper, the following are considered core data sets for the purposes of LECZv3 estimates: Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT-DEM), Global Human Settlement (GHSL) Population Grid R2019 and Degree of Urbanization Settlement Model Grid R2019a v2, and the Gridded Population of the World, Version 4 (GPWv4), Revision 11. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) and the City University of New York (CUNY) Institute for Demographic Research (CIDR).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/d1x1-d702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7927/d1x1-d702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Volodin, Evgeny; Mortikov, Evgeny; Gritsun, Andrey; Lykossov, Vasily; Galin, Vener; Diansky, Nikolay; Gusev, Anatoly; Kostrykin, Sergey; Iakovlev, Nikolay; Shestakova, Anna; Emelina, Svetlana;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.INM.INM-CM4-8.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The INM-CM4-8 climate model, released in 2016, includes the following components: aerosol: INM-AER1, atmos: INM-AM4-8 (2x1.5; 180 x 120 longitude/latitude; 21 levels; top level sigma = 0.01), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E; 360 x 318 longitude/latitude; 40 levels; sigma vertical coordinate), seaIce: INM-ICE1. The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cminic8pc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cminic8pc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Universitat Politecnica de Valencia Authors: Coll Aliaga; Peregrina Eloína;[EN] Buildings have become a key source of greenhouse gas (GHG) emissions due to the consumption of primary energy, especially when used to achieve thermal comfort conditions. In addition, buildings play a key role for adapting societies to climate change by achieving more energy efficiency. Therefore, buildings have become a key sector to tackle climate change at the local level. However, public decision-makers do not have tools with enough spatial resolution to prioritise and focus the available resources and efforts in an efficient manner. The objective of the research is to develop an innovative methodology based on a geographic information system (GIS) for mapping primary energy consumption and GHG emissions in buildings in cities according to energy efficiency certificates
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4995/dataset/10251/162283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 176visibility views 176 download downloads 64 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4995/dataset/10251/162283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:4TU.ResearchData Authors:Blom, Tess;
Blom, Tess
Blom, Tess in OpenAIREJenkins, Andrew;
Jenkins, Andrew
Jenkins, Andrew in OpenAIREPulselli, Riccardo;
Van den Dobbelsteen, A.A.J.F. (Andy);Pulselli, Riccardo
Pulselli, Riccardo in OpenAIREThis research evaluates the current carbon footprint of vertical farming systems by comparing the impact of one kilogram of butterhead lettuce produced in an operational vertical farm to that of conventional open-field farming (OF), soil-based greenhouse cultivation (GH(s)) and hydroponic greenhouse cultivation (GH(h)) in the Netherlands. A typical farm is defined for OF, GH(s) and GH(h) in the Netherlands, based on existing databases. It is not yet possible to define a typical vertical farm (VF) due to the breadth of approaches. Therefore, an operational vertical farm was used as a case study. Within the dataset the baseline activity data has been collected within the tabs ‘OF’, ‘GH(s)’, GH(h) and ‘VF’. The carbon footprint of each case study was calculated by accounting for all the GHG emissions from activities within the system boundaries, from cradle-to-grave, for the life cycle of both the crop and the farm. These GHG emissions were calculated as follows: CO₂-eq = activity data x EF, where CO2-eq is the carbon footprint of the activity in kg CO2-eq, and EF is the emission factor of the activity in kg CO₂-eq per unit of the activity data, assessed by referring to the IPCC GWP100a characterisation method in SimaPro 9.0.0, which is based on the Ecoinvent 3.6 database. Tab ‘EF’ provides an overview of the emissions factor sources used for activities within the study. Country-specific emission factors for the Netherlands were used for natural gas and electricity consumption to reflect the correct energy mix. By combining the collected activity data with the EFs, the carbon footprints of each farming system were calculated within the tabs ‘FIG04’ and ‘FIG05’. Three scenarios were created to improve the comparability of the baseline data as well as present potential carbon savings as a result of transitioning to renewable energy, which included: the lost carbon sequestration potential as a result of land-use change (FIG06), assuming identical sales packaging for all farming systems (FIG07, FIG08, FIG09), and a transition to renewable energy (FIG10). These scenarios, when considered collectively, greatly reduced the disparity between the carbon footprints of the three farming systems (FIG11 and FIG12). Electricity use represented the largest share in the carbon fooptrint of both baseline and alternative scenario, therefore, the electricity consumption of the VF was compared to that of other VF from literature in the tabs ‘FIG13’ and ‘FIG14’.
4TU.ResearchData | s... arrow_drop_down 4TU.ResearchData | science.engineering.designDataset . 2023License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2023License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19487078.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert 4TU.ResearchData | s... arrow_drop_down 4TU.ResearchData | science.engineering.designDataset . 2023License: CC BY NC SAData sources: Datacite4TU.ResearchData | science.engineering.designDataset . 2023License: CC BY NC SAData sources: DataciteDANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)DatasetData sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/19487078.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Narayanasetti, Sandeep;Panickal, Swapna;
Gopinathan, Prajeesh A.; Choudhury, Ayantika Dey; +2 AuthorsPanickal, Swapna
Panickal, Swapna in OpenAIRENarayanasetti, Sandeep;Panickal, Swapna;
Gopinathan, Prajeesh A.; Choudhury, Ayantika Dey; Singh, Manmeet; Raghavan, Krishnan;Panickal, Swapna
Panickal, Swapna in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CCCR-IITM.IITM-ESM.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IITM-ESM climate model, released in 2015, includes the following components: aerosol: prescribed MAC-v2, atmos: IITM-GFSv1 (T62L64, Linearly Reduced Gaussian Grid; 192 x 94 longitude/latitude; 64 levels; top level 0.2 mb), land: NOAH LSMv2.7.1, ocean: MOM4p1 (tripolar, primarily 1deg; 360 x 200 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: TOPAZv2.0, seaIce: SISv1.0. The model was run by the Centre for Climate Change Research, Indian Institute of Tropical Meteorology Pune, Maharashtra 411 008, India (CCCR-IITM) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spciiits126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spciiits126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Horowitz, Larry W.; John, Jasmin G.;Blanton, Chris;
Blanton, Chris
Blanton, Chris in OpenAIREMcHugh, Colleen;
+9 AuthorsMcHugh, Colleen
McHugh, Colleen in OpenAIREHorowitz, Larry W.; John, Jasmin G.;Blanton, Chris;
Blanton, Chris
Blanton, Chris in OpenAIREMcHugh, Colleen;
McHugh, Colleen
McHugh, Colleen in OpenAIRERadhakrishnan, Aparna;
Rand, Kristopher; Vahlenkamp, Hans; Zadeh, Niki T.; Wilson, Chandin; Dunne, John P.;Radhakrishnan, Aparna
Radhakrishnan, Aparna in OpenAIREPloshay, Jeffrey;
Winton, Michael;Ploshay, Jeffrey
Ploshay, Jeffrey in OpenAIREZeng, Yujin;
Zeng, Yujin
Zeng, Yujin in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.DAMIP.NOAA-GFDL.GFDL-ESM4' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The GFDL-ESM4 climate model, released in 2018, includes the following components: aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories). The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6danggfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6danggfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Seland, Øyvind;
Seland, Øyvind
Seland, Øyvind in OpenAIREBentsen, Mats;
Oliviè, Dirk Jan Leo; Toniazzo, Thomas; +26 AuthorsBentsen, Mats
Bentsen, Mats in OpenAIRESeland, Øyvind;
Seland, Øyvind
Seland, Øyvind in OpenAIREBentsen, Mats;
Oliviè, Dirk Jan Leo; Toniazzo, Thomas;Bentsen, Mats
Bentsen, Mats in OpenAIREGjermundsen, Ada;
Gjermundsen, Ada
Gjermundsen, Ada in OpenAIREGraff, Lise Seland;
Graff, Lise Seland
Graff, Lise Seland in OpenAIREDebernard, Jens Boldingh;
Gupta, Alok Kumar;Debernard, Jens Boldingh
Debernard, Jens Boldingh in OpenAIREHe, Yanchun;
He, Yanchun
He, Yanchun in OpenAIREKirkevåg, Alf;
Kirkevåg, Alf
Kirkevåg, Alf in OpenAIRESchwinger, Jörg;
Schwinger, Jörg
Schwinger, Jörg in OpenAIRETjiputra, Jerry;
Tjiputra, Jerry
Tjiputra, Jerry in OpenAIREAas, Kjetil Schanke;
Aas, Kjetil Schanke
Aas, Kjetil Schanke in OpenAIREBethke, Ingo;
Bethke, Ingo
Bethke, Ingo in OpenAIREFan, Yuanchao;
Fan, Yuanchao
Fan, Yuanchao in OpenAIREGriesfeller, Jan;
Grini, Alf;Griesfeller, Jan
Griesfeller, Jan in OpenAIREGuo, Chuncheng;
Guo, Chuncheng
Guo, Chuncheng in OpenAIREIlicak, Mehmet;
Ilicak, Mehmet
Ilicak, Mehmet in OpenAIREKarset, Inger Helene Hafsahl;
Karset, Inger Helene Hafsahl
Karset, Inger Helene Hafsahl in OpenAIRELandgren, Oskar Andreas;
Landgren, Oskar Andreas
Landgren, Oskar Andreas in OpenAIRELiakka, Johan;
Moseid, Kine Onsum;Liakka, Johan
Liakka, Johan in OpenAIRENummelin, Aleksi;
Nummelin, Aleksi
Nummelin, Aleksi in OpenAIRESpensberger, Clemens;
Tang, Hui;Spensberger, Clemens
Spensberger, Clemens in OpenAIREZhang, Zhongshi;
Zhang, Zhongshi
Zhang, Zhongshi in OpenAIREHeinze, Christoph;
Heinze, Christoph
Heinze, Christoph in OpenAIREIversen, Trond;
Iversen, Trond
Iversen, Trond in OpenAIRESchulz, Michael;
Schulz, Michael
Schulz, Michael in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.NCC.NorESM2-LM.esm-hist' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NorESM2-LM (low atmosphere-medium ocean resolution, GHG concentration driven) climate model, released in 2017, includes the following components: aerosol: OsloAero, atmos: CAM-OSLO (2 degree resolution; 144 x 96; 32 levels; top level 3 mb), atmosChem: OsloChemSimp, land: CLM, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC, seaIce: CICE. The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnccnleh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmnccnleh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu