- home
- Advanced Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 1. No poverty
- Energy Research
- 2021-2025
- 7. Clean energy
- 1. No poverty
description Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mahdi, Niknejhad; S M Seyed, Mahmoudi; Mortaza, Yari;pmid: 37156293
It has been known for a very long time that chemical energy may be converted into electrical energy by using biomass, considered a renewable energy source. In the study that is being presented here, an explanation and a presentation are offered on a one-of-a-kind hybrid system that generates dependable power and cooling by harnessing the chemical energy of biomass. An anaerobic digester takes in organic material and converts it into biomass by using the high-energy content of cow manure as fuel. The Rankin cycle is the primary engine that drives the system that produces energy, and its combustion-based byproducts are routed to an ammonia absorption refrigeration system in order to provide sufficient cooling for the process of pasteurizing and drying the milk. It is expected that solar panels might contribute to the production of sufficient amounts of power for necessary activities. The technical and financial facets of the system are both being investigated at the moment. In addition, the optimal working conditions are determined by employing a forward-thinking multi-objective optimization strategy. This method simultaneously raises the operational effectiveness to the greatest extent that is practically possible while simultaneously lowering both expenses and emissions. The findings indicate that under ideal conditions, the levelized cost of the product (LCOP), efficiency, and emission of the system are, respectively, 0.087 $/kWh, 38.2%, and 0.249 kg/kWh. The digester and the combustion chamber both have very high exergy destruction rates, with the digester having the highest rate and the combustion chamber having the second-highest rate among all of the system's components. This assertion is supported by every one of these components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2023.138845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2023.138845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Springer Science and Business Media LLC Authors: Andrew Adewale Alola; Kayode Kolawole Eluwole; Taiwo Temitope Lasisi; Taiwo Temitope Lasisi; +1 AuthorsAndrew Adewale Alola; Kayode Kolawole Eluwole; Taiwo Temitope Lasisi; Taiwo Temitope Lasisi; Uju Violet Alola;Beyond the anticipated experience associated with tourism destinations, the United Nations World Tourism Organization (UNWTO) has further tasked (especially the destination countries) on the importance of tourism to achieving the 2030 Sustainable Development Goals (SDGs). From this dimension, this study employed the ecological footprint of the 10 most visited countries (France, Spain, United States, China, Italy, Mexico, United Kingdom, Turkey, Germany, and Thailand) over the period 1995-2016. Specifically, the study employed an econometric approach and found that increase in tourism arrivals and globalization is detrimental to the attainment of sustainable environmental quality in a long term. Precisely, a 1% increase in international arrivals and globalization is responsible for a 0.18 and 0.89% increase in ecological footprint in the long-run. These impacts of tourism activities and globalization are detrimental to the environmental quality of the destination countries. Meanwhile, the real income per capita and biocapacity in the destination countries improve the environmental quality of the panel of destination countries in the long-run. In addition, the study found significant evidence of Granger causality from tourism and real income to ecological footprint without feedback, the globalization-ecological footprint Granger causality nexus is with feedback. Moreover, potentially effective policies for government and other stakeholders especially toward attaining Global goals were proffered in the study.
IGU Institutional Op... arrow_drop_down IGU Institutional Open Access RepositoryArticle . 2021License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryIGU Institutional Open Access RepositoryArticle . 2023License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryEnvironmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-12871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IGU Institutional Op... arrow_drop_down IGU Institutional Open Access RepositoryArticle . 2021License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryIGU Institutional Open Access RepositoryArticle . 2023License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryEnvironmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-12871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Jingxuan, Wu; Ruijun, Liu; Pengfei, Dong; Nan, Li; Weihua, He; Yujie, Feng; Jia, Liu;pmid: 36302411
Microbial fuel cells (MFCs) can potentially be utilized for power generation, but their low power density and low energy storage capabilities remain major bottlenecks for their large-scale development. In this research, a simplistic nitrogen-doped hierarchically porous carbon material (HPC-A) was developed through a one-step carbonization and activation process and was successfully hot-pressed on the carbon cloth (CC) substrate. This process fabricates capacitive bioanodes (HPC-A-CC) that can enhance electricity generation and storage in MFCs. The as-prepared HPC-A-CC anode delivered a power density of 2043.6 mW·m-2 and a cumulative total charge (Qm) of 426.4 ± 13.4C·m-2 at each cycle, which was 2.1 and 34.8 times higher than that of the plain CC anode, respectively. This was a result of the hierarchical and interconnected porous structure, improved hydrophilic surface, and increased number of active centers which host the bacteria for enhanced electron transfer. Electrochemical measurements indicated the superior electrochemical activity and capacitive behavior of the HPC-A-CC anode. Furthermore, biofilm analysis revealed that the HPC-A-CC biofilm exhibited higher cell viability and a more uniform spatial distribution. These findings not only demonstrate the potential of HPC-A-CC for power enhancement in MFCs but also provide a feasible solution to the problem of power generation and demand mismatch in MFC applications.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Rebecca J. Barthelmie; Sara C. Pryor;doi: 10.3390/cli9090136
Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.
Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:SAGE Publications Authors: Omar Mohamed;Coal power plants have been a major source of undesirable emissions. Despite the technological advancements in renewable energies, coal units are still in-service in many developed and developing countries due to their reliability, adequacy, and flexibility for power delivery. There are some promising technologies for cleaner operation during power production from coal, including supercritical boiler (SC) design and carbon capture and storage (CCS), however, the challenging in innovating effective methods is still open to expand the boundary of knowledge in this speciality. This paper introduces a novel and simple method for reducing CO2 emissions and improving the dynamic responses of a 600 MW SC coal power plant by Artificial Neural Network (ANN) technique. A wide-range data-driven feedforward ANN model has been identified and verified for the various operations recorded as closed-loop data-sets, which covers all situations of startup, once-through mode, and even emergency shutdown of the unit. The closed-loop SC plant model has been augmented with an inverse multivariable coordinate NN controller, developed by analogous learning algorithm to improve the plant automation. With precisely selected setpoints, as operational rules, of temperature, pressure, and earliest possible power demand signals, the automated SC plant has been capable to operate with lower coal consumption - and thus lower emissions – than the existing operation strategy during startup, normal operation, and emergency shutdown modes. The improvement in dynamic responses have been quantified through simulations with comparison with existing performance, which have resulted in an overall average reduction of 2.143 Kg/s in coal consumption.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Su, Dan; Li, Kaicheng; Shi, Nian;doi: 10.3390/su13179868
To meet power quality requirements, it is necessary to classify and identify the power quality of the power grid connected with renewable energy generation. S-transform (ST) is an effective method to analyze power quality in time and frequency domains. ST is widely used to detect and classify various kinds of non-stationary power quality disturbances. However, the long taper and scaling criteria of the Gaussian window in standard ST (SST) will lead to poor time domain resolution at low frequency and poor frequency resolution at high frequency. To solve the discrete side effects, it is necessary to select the optimal window function to locate the time frequency accurately. This paper proposes a modified ST (MST) method. In this method, an improved window function of energy concentration in time-frequency distribution is introduced to optimize the shape of each window function. This method determines the parameters of Gaussian window to maximize the product of energy concentration in a time-frequency domain within a given time and frequency interval, so as to improve the energy concentration. The result shows that compared with the SST with Gaussian window, ST based on the optimally concentrated window proposed in this paper has better energy concentration in time-frequency distribution.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Asif Ali; Tahir Iqbal; Muhammad Jehanzeb Masud Cheema; Arslan Afzal; Muhammad Yasin; Zia ul Haq; Arshad Mahmood Malik; Khalid Saifullah Khan;doi: 10.3390/su13095152
The energy crisis and increasing fossil fuel prices due to increasing demands, controlled supplies, and global political unrest have adversely affected agricultural productivity and farm profitability across the globe and Pakistan is not an exception. To cope with this issue of energy deficiency in agriculture, the best alternate strategy is to take advantage of biomass and solid waste potential. In low-income countries such as Pakistan, the greenhouse heating system mostly relies on fossil fuels such as diesel, gasoline, and LPG. Farmers are reluctant to adopt greenhouse farming due to the continuously rising prices of the fossil fuels. To reduce reliance on fossil fuel energy, the objective of this study was to utilize biomass from crop residues to develop an efficient and economical biomass furnace that could heat greenhouses to protect the crop from seasonal temperature effects. Modifications made to the biomass furnace, such as the incorporation of insulation around the walls of the furnace, providing turbulators in fire tubes, and a secondary heat exchanger (heat recovery system) in the chimney, have increased the thermal efficiency of the biomass furnace by about 21.7%. A drastic reduction in hazardous elements of flue gases was observed due to the addition of a water scrubber smoke filter in the exit line of the flue. The efficiency of the biomass furnace ranged from 50.42% to 54.18%, whereas the heating efficiency of the diesel-fired heater was 71.19%. On the basis of the equal heating value of the fuels, the unit material and operating costs of the biomass furnace for wood, cotton stalks, corn cobs, and cow dung were USD 2.04, 1.86, 1.78, and 2.00 respectively against USD 4.67/h for the diesel heater. The capital and operating costs of the biomass furnace were about 50% and 43.7% of the diesel heater respectively, resulting in a seasonal saving of about 1573 USD. The produced smoke was tested as environmental friendly under the prescribed limits of the National Environmental Quality Standards (NEQS), which shows potential for its large-scale adoption and wider applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIXuelian Liu; Marion Maffre; Da Tie; Nils Peter Wagner; Noelia Cortés Félix; Raheleh Azmi; Killian Stokes; Per Erik Vullum; Jérome Bailly; Shubhadeep Pal; Gary Evans; Mihaela Buga; Maria Hahlin; Kristina Edström; Simon Clark; Alexandru Vlad;handle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Mahdi, Niknejhad; S M Seyed, Mahmoudi; Mortaza, Yari;pmid: 37156293
It has been known for a very long time that chemical energy may be converted into electrical energy by using biomass, considered a renewable energy source. In the study that is being presented here, an explanation and a presentation are offered on a one-of-a-kind hybrid system that generates dependable power and cooling by harnessing the chemical energy of biomass. An anaerobic digester takes in organic material and converts it into biomass by using the high-energy content of cow manure as fuel. The Rankin cycle is the primary engine that drives the system that produces energy, and its combustion-based byproducts are routed to an ammonia absorption refrigeration system in order to provide sufficient cooling for the process of pasteurizing and drying the milk. It is expected that solar panels might contribute to the production of sufficient amounts of power for necessary activities. The technical and financial facets of the system are both being investigated at the moment. In addition, the optimal working conditions are determined by employing a forward-thinking multi-objective optimization strategy. This method simultaneously raises the operational effectiveness to the greatest extent that is practically possible while simultaneously lowering both expenses and emissions. The findings indicate that under ideal conditions, the levelized cost of the product (LCOP), efficiency, and emission of the system are, respectively, 0.087 $/kWh, 38.2%, and 0.249 kg/kWh. The digester and the combustion chamber both have very high exergy destruction rates, with the digester having the highest rate and the combustion chamber having the second-highest rate among all of the system's components. This assertion is supported by every one of these components.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2023.138845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2023.138845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Springer Science and Business Media LLC Authors: Andrew Adewale Alola; Kayode Kolawole Eluwole; Taiwo Temitope Lasisi; Taiwo Temitope Lasisi; +1 AuthorsAndrew Adewale Alola; Kayode Kolawole Eluwole; Taiwo Temitope Lasisi; Taiwo Temitope Lasisi; Uju Violet Alola;Beyond the anticipated experience associated with tourism destinations, the United Nations World Tourism Organization (UNWTO) has further tasked (especially the destination countries) on the importance of tourism to achieving the 2030 Sustainable Development Goals (SDGs). From this dimension, this study employed the ecological footprint of the 10 most visited countries (France, Spain, United States, China, Italy, Mexico, United Kingdom, Turkey, Germany, and Thailand) over the period 1995-2016. Specifically, the study employed an econometric approach and found that increase in tourism arrivals and globalization is detrimental to the attainment of sustainable environmental quality in a long term. Precisely, a 1% increase in international arrivals and globalization is responsible for a 0.18 and 0.89% increase in ecological footprint in the long-run. These impacts of tourism activities and globalization are detrimental to the environmental quality of the destination countries. Meanwhile, the real income per capita and biocapacity in the destination countries improve the environmental quality of the panel of destination countries in the long-run. In addition, the study found significant evidence of Granger causality from tourism and real income to ecological footprint without feedback, the globalization-ecological footprint Granger causality nexus is with feedback. Moreover, potentially effective policies for government and other stakeholders especially toward attaining Global goals were proffered in the study.
IGU Institutional Op... arrow_drop_down IGU Institutional Open Access RepositoryArticle . 2021License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryIGU Institutional Open Access RepositoryArticle . 2023License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryEnvironmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-12871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IGU Institutional Op... arrow_drop_down IGU Institutional Open Access RepositoryArticle . 2021License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryIGU Institutional Open Access RepositoryArticle . 2023License: CC BY NC NDData sources: IGU Institutional Open Access RepositoryEnvironmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-12871-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Jingxuan, Wu; Ruijun, Liu; Pengfei, Dong; Nan, Li; Weihua, He; Yujie, Feng; Jia, Liu;pmid: 36302411
Microbial fuel cells (MFCs) can potentially be utilized for power generation, but their low power density and low energy storage capabilities remain major bottlenecks for their large-scale development. In this research, a simplistic nitrogen-doped hierarchically porous carbon material (HPC-A) was developed through a one-step carbonization and activation process and was successfully hot-pressed on the carbon cloth (CC) substrate. This process fabricates capacitive bioanodes (HPC-A-CC) that can enhance electricity generation and storage in MFCs. The as-prepared HPC-A-CC anode delivered a power density of 2043.6 mW·m-2 and a cumulative total charge (Qm) of 426.4 ± 13.4C·m-2 at each cycle, which was 2.1 and 34.8 times higher than that of the plain CC anode, respectively. This was a result of the hierarchical and interconnected porous structure, improved hydrophilic surface, and increased number of active centers which host the bacteria for enhanced electron transfer. Electrochemical measurements indicated the superior electrochemical activity and capacitive behavior of the HPC-A-CC anode. Furthermore, biofilm analysis revealed that the HPC-A-CC biofilm exhibited higher cell viability and a more uniform spatial distribution. These findings not only demonstrate the potential of HPC-A-CC for power enhancement in MFCs but also provide a feasible solution to the problem of power generation and demand mismatch in MFC applications.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.159688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Rebecca J. Barthelmie; Sara C. Pryor;doi: 10.3390/cli9090136
Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.
Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Climate arrow_drop_down ClimateOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2225-1154/9/9/136/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/cli9090136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:SAGE Publications Authors: Omar Mohamed;Coal power plants have been a major source of undesirable emissions. Despite the technological advancements in renewable energies, coal units are still in-service in many developed and developing countries due to their reliability, adequacy, and flexibility for power delivery. There are some promising technologies for cleaner operation during power production from coal, including supercritical boiler (SC) design and carbon capture and storage (CCS), however, the challenging in innovating effective methods is still open to expand the boundary of knowledge in this speciality. This paper introduces a novel and simple method for reducing CO2 emissions and improving the dynamic responses of a 600 MW SC coal power plant by Artificial Neural Network (ANN) technique. A wide-range data-driven feedforward ANN model has been identified and verified for the various operations recorded as closed-loop data-sets, which covers all situations of startup, once-through mode, and even emergency shutdown of the unit. The closed-loop SC plant model has been augmented with an inverse multivariable coordinate NN controller, developed by analogous learning algorithm to improve the plant automation. With precisely selected setpoints, as operational rules, of temperature, pressure, and earliest possible power demand signals, the automated SC plant has been capable to operate with lower coal consumption - and thus lower emissions – than the existing operation strategy during startup, normal operation, and emergency shutdown modes. The improvement in dynamic responses have been quantified through simulations with comparison with existing performance, which have resulted in an overall average reduction of 2.143 Kg/s in coal consumption.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Su, Dan; Li, Kaicheng; Shi, Nian;doi: 10.3390/su13179868
To meet power quality requirements, it is necessary to classify and identify the power quality of the power grid connected with renewable energy generation. S-transform (ST) is an effective method to analyze power quality in time and frequency domains. ST is widely used to detect and classify various kinds of non-stationary power quality disturbances. However, the long taper and scaling criteria of the Gaussian window in standard ST (SST) will lead to poor time domain resolution at low frequency and poor frequency resolution at high frequency. To solve the discrete side effects, it is necessary to select the optimal window function to locate the time frequency accurately. This paper proposes a modified ST (MST) method. In this method, an improved window function of energy concentration in time-frequency distribution is introduced to optimize the shape of each window function. This method determines the parameters of Gaussian window to maximize the product of energy concentration in a time-frequency domain within a given time and frequency interval, so as to improve the energy concentration. The result shows that compared with the SST with Gaussian window, ST based on the optimally concentrated window proposed in this paper has better energy concentration in time-frequency distribution.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Asif Ali; Tahir Iqbal; Muhammad Jehanzeb Masud Cheema; Arslan Afzal; Muhammad Yasin; Zia ul Haq; Arshad Mahmood Malik; Khalid Saifullah Khan;doi: 10.3390/su13095152
The energy crisis and increasing fossil fuel prices due to increasing demands, controlled supplies, and global political unrest have adversely affected agricultural productivity and farm profitability across the globe and Pakistan is not an exception. To cope with this issue of energy deficiency in agriculture, the best alternate strategy is to take advantage of biomass and solid waste potential. In low-income countries such as Pakistan, the greenhouse heating system mostly relies on fossil fuels such as diesel, gasoline, and LPG. Farmers are reluctant to adopt greenhouse farming due to the continuously rising prices of the fossil fuels. To reduce reliance on fossil fuel energy, the objective of this study was to utilize biomass from crop residues to develop an efficient and economical biomass furnace that could heat greenhouses to protect the crop from seasonal temperature effects. Modifications made to the biomass furnace, such as the incorporation of insulation around the walls of the furnace, providing turbulators in fire tubes, and a secondary heat exchanger (heat recovery system) in the chimney, have increased the thermal efficiency of the biomass furnace by about 21.7%. A drastic reduction in hazardous elements of flue gases was observed due to the addition of a water scrubber smoke filter in the exit line of the flue. The efficiency of the biomass furnace ranged from 50.42% to 54.18%, whereas the heating efficiency of the diesel-fired heater was 71.19%. On the basis of the equal heating value of the fuels, the unit material and operating costs of the biomass furnace for wood, cotton stalks, corn cobs, and cow dung were USD 2.04, 1.86, 1.78, and 2.00 respectively against USD 4.67/h for the diesel heater. The capital and operating costs of the biomass furnace were about 50% and 43.7% of the diesel heater respectively, resulting in a seasonal saving of about 1573 USD. The produced smoke was tested as environmental friendly under the prescribed limits of the National Environmental Quality Standards (NEQS), which shows potential for its large-scale adoption and wider applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu