- home
- Advanced Search
- Energy Research
- 2021-2025
- 7. Clean energy
- 15. Life on land
- 6. Clean water
- 16. Peace & justice
- Energy Research
- 2021-2025
- 7. Clean energy
- 15. Life on land
- 6. Clean water
- 16. Peace & justice
description Publicationkeyboard_double_arrow_right Article 2023Publisher:SAGE Publications Coal power plants have been a major source of undesirable emissions. Despite the technological advancements in renewable energies, coal units are still in-service in many developed and developing countries due to their reliability, adequacy, and flexibility for power delivery. There are some promising technologies for cleaner operation during power production from coal, including supercritical boiler (SC) design and carbon capture and storage (CCS), however, the challenging in innovating effective methods is still open to expand the boundary of knowledge in this speciality. This paper introduces a novel and simple method for reducing CO2 emissions and improving the dynamic responses of a 600 MW SC coal power plant by Artificial Neural Network (ANN) technique. A wide-range data-driven feedforward ANN model has been identified and verified for the various operations recorded as closed-loop data-sets, which covers all situations of startup, once-through mode, and even emergency shutdown of the unit. The closed-loop SC plant model has been augmented with an inverse multivariable coordinate NN controller, developed by analogous learning algorithm to improve the plant automation. With precisely selected setpoints, as operational rules, of temperature, pressure, and earliest possible power demand signals, the automated SC plant has been capable to operate with lower coal consumption - and thus lower emissions – than the existing operation strategy during startup, normal operation, and emergency shutdown modes. The improvement in dynamic responses have been quantified through simulations with comparison with existing performance, which have resulted in an overall average reduction of 2.143 Kg/s in coal consumption.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09576509231192140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Md. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; +2 AuthorsHussein Almohamad
Hussein Almohamad in OpenAIREMd. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry;Hussein Almohamad
Hussein Almohamad in OpenAIREHazem Ghassan Abdo;
Hazem Ghassan Abdo
Hazem Ghassan Abdo in OpenAIREdoi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Su, Dan; Li, Kaicheng; Shi, Nian;doi: 10.3390/su13179868
To meet power quality requirements, it is necessary to classify and identify the power quality of the power grid connected with renewable energy generation. S-transform (ST) is an effective method to analyze power quality in time and frequency domains. ST is widely used to detect and classify various kinds of non-stationary power quality disturbances. However, the long taper and scaling criteria of the Gaussian window in standard ST (SST) will lead to poor time domain resolution at low frequency and poor frequency resolution at high frequency. To solve the discrete side effects, it is necessary to select the optimal window function to locate the time frequency accurately. This paper proposes a modified ST (MST) method. In this method, an improved window function of energy concentration in time-frequency distribution is introduced to optimize the shape of each window function. This method determines the parameters of Gaussian window to maximize the product of energy concentration in a time-frequency domain within a given time and frequency interval, so as to improve the energy concentration. The result shows that compared with the SST with Gaussian window, ST based on the optimally concentrated window proposed in this paper has better energy concentration in time-frequency distribution.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Asif Ali;Tahir Iqbal;
Tahir Iqbal
Tahir Iqbal in OpenAIREMuhammad Jehanzeb Masud Cheema;
Arslan Afzal; +4 AuthorsMuhammad Jehanzeb Masud Cheema
Muhammad Jehanzeb Masud Cheema in OpenAIREAsif Ali;Tahir Iqbal;
Tahir Iqbal
Tahir Iqbal in OpenAIREMuhammad Jehanzeb Masud Cheema;
Arslan Afzal; Muhammad Yasin;Muhammad Jehanzeb Masud Cheema
Muhammad Jehanzeb Masud Cheema in OpenAIREZia ul Haq;
Zia ul Haq
Zia ul Haq in OpenAIREArshad Mahmood Malik;
Khalid Saifullah Khan;Arshad Mahmood Malik
Arshad Mahmood Malik in OpenAIREdoi: 10.3390/su13095152
The energy crisis and increasing fossil fuel prices due to increasing demands, controlled supplies, and global political unrest have adversely affected agricultural productivity and farm profitability across the globe and Pakistan is not an exception. To cope with this issue of energy deficiency in agriculture, the best alternate strategy is to take advantage of biomass and solid waste potential. In low-income countries such as Pakistan, the greenhouse heating system mostly relies on fossil fuels such as diesel, gasoline, and LPG. Farmers are reluctant to adopt greenhouse farming due to the continuously rising prices of the fossil fuels. To reduce reliance on fossil fuel energy, the objective of this study was to utilize biomass from crop residues to develop an efficient and economical biomass furnace that could heat greenhouses to protect the crop from seasonal temperature effects. Modifications made to the biomass furnace, such as the incorporation of insulation around the walls of the furnace, providing turbulators in fire tubes, and a secondary heat exchanger (heat recovery system) in the chimney, have increased the thermal efficiency of the biomass furnace by about 21.7%. A drastic reduction in hazardous elements of flue gases was observed due to the addition of a water scrubber smoke filter in the exit line of the flue. The efficiency of the biomass furnace ranged from 50.42% to 54.18%, whereas the heating efficiency of the diesel-fired heater was 71.19%. On the basis of the equal heating value of the fuels, the unit material and operating costs of the biomass furnace for wood, cotton stalks, corn cobs, and cow dung were USD 2.04, 1.86, 1.78, and 2.00 respectively against USD 4.67/h for the diesel heater. The capital and operating costs of the biomass furnace were about 50% and 43.7% of the diesel heater respectively, resulting in a seasonal saving of about 1573 USD. The produced smoke was tested as environmental friendly under the prescribed limits of the National Environmental Quality Standards (NEQS), which shows potential for its large-scale adoption and wider applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/9/5152/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Naksh Solutions Authors: null Prof. P. S. Mali; null Patil Arti S; null Gavade Pratibha S; null Mane Mrunal A; +1 Authorsnull Prof. P. S. Mali; null Patil Arti S; null Gavade Pratibha S; null Mane Mrunal A; null Patil Aniket A;This paper describes the application of IoT Technology for monitoring different parameters of battery of electric vehicle. Electric vehicle totally depends upon the source of energy from the battery. In this project, the idea of monitoring the performance of the vehicle using IoT techniques is proposed, so that monitoring can be done easily and directly. The objective of the project is to promote green power and to improve smartness of electric vehicle by monitoring the battery parameters such as voltage, temperature, current and charge avaibility. Also, these values displayed in cloud, which brings the concept of Internet of Things (IoT). The IoT based battery monitoring system consist of two major parts i) Monitoring device and ii) User interface. Based on experimental results, the system is capable to detect battery performance.
International Journa... arrow_drop_down International Journal of Advanced Research in Science Communication and TechnologyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48175/ijarsct-4767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Advanced Research in Science Communication and TechnologyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48175/ijarsct-4767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesAuthors:Silvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
+41 AuthorsLevan Tielidze
Levan Tielidze in OpenAIRESilvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
Levan Tielidze
Levan Tielidze in OpenAIREPritam Chand;
Pritam Chand
Pritam Chand in OpenAIREKatrin Sieron;
Katrin Sieron
Katrin Sieron in OpenAIREPeter Almond;
Roberto Ambrosini;Peter Almond
Peter Almond in OpenAIREFabien Anthelme;
Pablo Alviz Gazitúa;Fabien Anthelme
Fabien Anthelme in OpenAIRERakesh Bhambri;
Rakesh Bhambri
Rakesh Bhambri in OpenAIREAurélie Bonin;
Marco Caccianiga;Aurélie Bonin
Aurélie Bonin in OpenAIRESophie Cauvy-Fraunié;
Jorge Luis Ceballos Lievano;Sophie Cauvy-Fraunié
Sophie Cauvy-Fraunié in OpenAIREJohn Clague;
Justiniano Alejo Cochachín Rapre;John Clague
John Clague in OpenAIREOlivier Dangles;
Olivier Dangles
Olivier Dangles in OpenAIREPhilip Deline;
Andre Eger;Philip Deline
Philip Deline in OpenAIRERolando Cruz Encarnación;
Sergey Erokhin;Rolando Cruz Encarnación
Rolando Cruz Encarnación in OpenAIREAndrea Franzetti;
Andrea Franzetti
Andrea Franzetti in OpenAIRELudovic Gielly;
Ludovic Gielly
Ludovic Gielly in OpenAIREFabrizio Gili;
Fabrizio Gili
Fabrizio Gili in OpenAIREMauro Gobbi;
Mauro Gobbi
Mauro Gobbi in OpenAIREAlessia Guerrieri;
Sigmund Hågvar;Alessia Guerrieri
Alessia Guerrieri in OpenAIRENorine Khedim;
Norine Khedim
Norine Khedim in OpenAIRERahab Kinyanjui;
Rahab Kinyanjui
Rahab Kinyanjui in OpenAIREErwan Messager;
Marco Aurelio Morales-Martínez;Erwan Messager
Erwan Messager in OpenAIREGwendolyn Peyre;
Francesca Pittino;Gwendolyn Peyre
Gwendolyn Peyre in OpenAIREJerome Poulenard;
Jerome Poulenard
Jerome Poulenard in OpenAIRERoberto Seppi;
Milap Chand Sharma; Nurai Urseitova; Blake Weissling;Roberto Seppi
Roberto Seppi in OpenAIREYan Yang;
Vitalii Zaginaev;Yan Yang
Yan Yang in OpenAIREAnaïs Zimmer;
Anaïs Zimmer
Anaïs Zimmer in OpenAIREGuglielmina Adele Diolaiuti;
Guglielmina Adele Diolaiuti
Guglielmina Adele Diolaiuti in OpenAIREAntoine Rabatel;
Antoine Rabatel
Antoine Rabatel in OpenAIREGentile Francesco Ficetola;
Gentile Francesco Ficetola
Gentile Francesco Ficetola in OpenAIREdoi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Preprint 2024Embargo end date: 01 Jan 2023Publisher:IEEE Authors: Nikbakht R.;Javed F.;
Javed F.
Javed F. in OpenAIRERezazadeh F.;
Rezazadeh F.
Rezazadeh F. in OpenAIREBartzoudis N.;
+1 AuthorsBartzoudis N.
Bartzoudis N. in OpenAIRENikbakht R.;Javed F.;
Javed F.
Javed F. in OpenAIRERezazadeh F.;
Rezazadeh F.
Rezazadeh F. in OpenAIREBartzoudis N.;
Bartzoudis N.
Bartzoudis N. in OpenAIREMangues-Bafalluy J.;
Mangues-Bafalluy J.
Mangues-Bafalluy J. in OpenAIREThe paper introduces an advanced Decentralized Energy Marketplace (DEM) integrating blockchain technology and artificial intelligence to manage energy exchanges among smart homes with energy storage systems. The proposed framework uses Non-Fungible Tokens (NFTs) to represent unique energy profiles in a transparent and secure trading environment. Leveraging Federated Deep Reinforcement Learning (FDRL), the system promotes collaborative and adaptive energy management strategies, maintaining user privacy. A notable innovation is the use of smart contracts, ensuring high efficiency and integrity in energy transactions. Extensive evaluations demonstrate the system's scalability and the effectiveness of the FDRL method in optimizing energy distribution. This research significantly contributes to developing sophisticated decentralized smart grid infrastructures. Our approach broadens potential blockchain and AI applications in sustainable energy systems and addresses incentive alignment and transparency challenges in traditional energy trading mechanisms. The implementation of this paper is publicly accessible at \url{https://github.com/RasoulNik/DEM}. 6 pages
arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon58629.2024.10488795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://doi.org/10.1109/energy...Conference object . 2024 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/energycon58629.2024.10488795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Publicly fundeddoi: 10.3390/en14196265
Recent developments in micro-grids have led to increased interest in DC distribution due to its high efficiency in distributing energy from renewable energy sources to DC loads. This paper seeks to analyse the performance of AC and DC systems in a relatively large-sized 6 kW PV installation to determine the level of improvement in efficiency provided by DC distribution and to identify methods for further improvement. Baseline annual data for the AC system were collected from a live installation on a national school in Inis Oirr, an island off the west coast of Ireland. The results indicate that usage of a DC distribution system has the potential to reduce system losses by up to 50% as well as the ability for an annual saving in grid energy of 5% compared to the existing AC system. Moreover, the analysis reveals that DC outperforms AC distribution more in spring and autumn, when power consumption is comparable to the system production, but there is less impact in summer, when PV production is significantly higher than demand. These findings provide insights into the benefits of future DC distribution systems in individual buildings and in larger-scale micro-grids.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6265/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6265/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200133 (Univeristy of Niö, Faculty of Technology, Leskovac)Authors:Ivan M. Savic;
Ivan M. Savic
Ivan M. Savic in OpenAIREIvana M. Savic Gajic;
Ivana M. Savic Gajic
Ivana M. Savic Gajic in OpenAIREdoi: 10.3390/su15032102
Reducing natural resources caused by the growth of the world’s population, meeting the growing demands of consumers, and preventing environmental pollution requires the development of sustainable and efficient procedures that include the valorization of wastes [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu