- home
- Advanced Search
Filters
Clear All- Energy Research
- National Institutes of Health
- English
- Energy Research
- National Institutes of Health
- English
apps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NIH | Miami Dade College - Univ..., NIH | National Resource for Apl...NIH| Miami Dade College - University of Miami Bridge to the Baccalaureate Program ,NIH| National Resource for AplysiaAuthors: Zlatkin, Rebecca L; Heuer, Rachael M;Behavioural impairment following exposure to ocean acidification-relevant CO2 levels has been noted in a broad array of taxa. The underlying cause of these disruptions is thought to stem from alterations of ion gradients ([HCO3]−/Cl−) across neuronal cell membranes that occur as a consequence of maintaining pH homeostasis via the accumulation of [HCO3]−. While behavioural impacts are widely documented, few studies have measured acid–base parameters in species showing behavioural disruptions. In addition, current studies examining mechanisms lack resolution in targeting specific neural pathways corresponding to a given behaviour. With these considerations in mind, acid–base parameters and behaviour were measured in a model organism used for decades as a research model to study learning, the California sea hare (Aplysia californica). Aplysia exposed to elevated CO2 increased haemolymph [HCO3]−, achieving full and partial pH compensation at 1200 and 3000 µatm CO2, respectively. Increased CO2 did not affect self-righting behaviour. In contrast, both levels of elevated CO2 reduced the time of the tail-withdrawal reflex, suggesting a reduction in antipredator response. Overall, these results confirm that Aplysia are promising models to examine mechanisms underlying CO2-induced behavioural disruptions since they regulate [HCO3]− and have behaviours linked to neural networks amenable to electrophysiological testing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::adc3fb4b93da4f953f00bf3f4ca069f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::adc3fb4b93da4f953f00bf3f4ca069f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
apps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:NIH | Miami Dade College - Univ..., NIH | National Resource for Apl...NIH| Miami Dade College - University of Miami Bridge to the Baccalaureate Program ,NIH| National Resource for AplysiaAuthors: Zlatkin, Rebecca L; Heuer, Rachael M;Behavioural impairment following exposure to ocean acidification-relevant CO2 levels has been noted in a broad array of taxa. The underlying cause of these disruptions is thought to stem from alterations of ion gradients ([HCO3]−/Cl−) across neuronal cell membranes that occur as a consequence of maintaining pH homeostasis via the accumulation of [HCO3]−. While behavioural impacts are widely documented, few studies have measured acid–base parameters in species showing behavioural disruptions. In addition, current studies examining mechanisms lack resolution in targeting specific neural pathways corresponding to a given behaviour. With these considerations in mind, acid–base parameters and behaviour were measured in a model organism used for decades as a research model to study learning, the California sea hare (Aplysia californica). Aplysia exposed to elevated CO2 increased haemolymph [HCO3]−, achieving full and partial pH compensation at 1200 and 3000 µatm CO2, respectively. Increased CO2 did not affect self-righting behaviour. In contrast, both levels of elevated CO2 reduced the time of the tail-withdrawal reflex, suggesting a reduction in antipredator response. Overall, these results confirm that Aplysia are promising models to examine mechanisms underlying CO2-induced behavioural disruptions since they regulate [HCO3]− and have behaviours linked to neural networks amenable to electrophysiological testing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::adc3fb4b93da4f953f00bf3f4ca069f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::adc3fb4b93da4f953f00bf3f4ca069f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu