- home
- Advanced Search
- Energy Research
- National Science Foundation
- Sensors
- Energy Research
- National Science Foundation
- Sensors
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Collaborative Research: S...NSF| Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching ModulesAuthors: Edward L. Amoruso; Richard Leinecker; Cliff C. Zou;The Windows registry contains a plethora of information in a hierarchical database. It includes system-wide settings, user preferences, installed programs, and recently accessed files and maintains timestamps that can be used to construct a detailed timeline of user activities. However, these data are unencrypted and thus vulnerable to exploitation by malicious actors who gain access to this repository. To address this security and privacy concern, we propose a novel approach that efficiently encrypts and decrypts sensitive registry data in real time. Our developed proof-of-concept program intercepts interactions between the registry’s application programming interfaces (APIs) and other Windows applications using an advanced hooking technique. This enables the proposed system to be transparent to users without requiring any changes to the operating system or installed software. Our approach also implements the data protection API (DPAPI) developed by Microsoft to securely manage each user’s encryption key. Ultimately, our research provides an enhanced security and privacy framework for the Windows registry, effectively fortifying the registry against security and privacy threats while maintaining its accessibility to legitimate users and applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24165106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24165106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Dynamics of surfactant - amyloid-beta protein interactions during self-assemblyPulak Majumdar; Satyaki Roy; Sudipta Sikdar; Preetam Ghosh; Nirnay Ghosh;Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24206531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24206531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Planning Grant: Engineeri...NSF| Planning Grant: Engineering Research Center for Integrative Manufacturing and Remanufacturing Technologies (iMart) to Spur Rural DevelopmentAuthors: Laraib Khan; Sriram Praneeth Isanaka; Frank Liou;The combination of distributed digital factories (D2Fs) with sustainable practices has been proposed as a revolutionary technique in modern manufacturing. This review paper explores the convergence of D2F with innovative sensor technology, concentrating on the role of Field Programmable Gate Arrays (FPGAs) in promoting this paradigm. A D2F is defined as an integrated framework where digital twins (DTs), sensors, laser additive manufacturing (laser-AM), and subtractive manufacturing (SM) work in synchronization. Here, DTs serve as a virtual replica of physical machines, allowing accurate monitoring and control of a given manufacturing process. These DTs are supplemented by sensors, providing near-real-time data to assure the effectiveness of the manufacturing processes. FPGAs, identified for their re-programmability, reduced power usage, and enhanced processing compared to traditional processors, are increasingly being used to develop near-real-time monitoring systems within manufacturing networks. This review paper identifies the recent expansions in FPGA-based sensors and their exploration within the D2Fs operations. The primary topics incorporate the deployment of eco-efficient data management and near-real-time monitoring, targeted at lowering waste and optimizing resources. The review paper also identifies the future research directions in this field. By incorporating advanced sensors, DTs, laser-AM, and SM processes, this review emphasizes a path toward more sustainable and resilient D2Fs operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24237709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24237709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:MDPI AG Funded by:NSF | Louisiana EPSCoR Research...NSF| Louisiana EPSCoR Research Infrastructure ImprovementAuthors: Cui, Ling; Murray, Erica;The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.
Sensors arrow_drop_down SensorsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1424-8220/15/9/24573/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s150924573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1424-8220/15/9/24573/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s150924573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 United States, Italy, Spain, SpainPublisher:MDPI AG Funded by:NSF | IGERT: A New PhD Program ...NSF| IGERT: A New PhD Program in Wind Energy Science, Engineering and PolicyAuthors: Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; +6 AuthorsMeoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo;The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/3/831/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of South Carolina Libraries: Scholar CommonsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.3390/s18030831Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0063.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/3/831/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of South Carolina Libraries: Scholar CommonsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.3390/s18030831Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0063.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Funded by:NSF | RII Track-1: The New Mexi...NSF| RII Track-1: The New Mexico SMART Grid Center: Sustainable, Modular, Adaptive, Resilient, and TransactiveAuthors: Fisayo Sangoleye; Nafis Irtija; Eirini Eleni Tsiropoulou;In this article, we address the problem of prolonging the battery life of Internet of Things (IoT) nodes by introducing a smart energy harvesting framework for IoT networks supported by femtocell access points (FAPs) based on the principles of Contract Theory and Reinforcement Learning. Initially, the IoT nodes’ social and physical characteristics are identified and captured through the concept of IoT node types. Then, Contract Theory is adopted to capture the interactions among the FAPs, who provide personalized rewards, i.e., charging power, to the IoT nodes to incentivize them to invest their effort, i.e., transmission power, to report their data to the FAPs. The IoT nodes’ and FAPs’ contract-theoretic utility functions are formulated, following the network economic concept of the involved entities’ personalized profit. A contract-theoretic optimization problem is introduced to determine the optimal personalized contracts among each IoT node connected to a FAP, i.e., a pair of transmission and charging power, aiming to jointly guarantee the optimal satisfaction of all the involved entities in the examined IoT system. An artificial intelligent framework based on reinforcement learning is introduced to support the IoT nodes’ autonomous association to the most beneficial FAP in terms of long-term gained rewards. Finally, a detailed simulation and comparative results are presented to show the pure operation performance of the proposed framework, as well as its drawbacks and benefits, compared to other approaches. Our findings show that the personalized contracts offered to the IoT nodes outperform by a factor of four compared to an agnostic type approach in terms of the achieved IoT system’s social welfare.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/8/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21082755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/8/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21082755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Funded by:NSF | Career: Towards Secured a...NSF| Career: Towards Secured and Efficient Energy-based Critical InfrastructureQingyu Yang; Dou An; Wei Yu; Xinyu Yang; Zhengan Tan;Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/6/907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16060907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/6/907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16060907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:MDPI AG Funded by:NSF | CRII: SaTC: Energy Effici..., NSERC, NSF | I/UCRC CGI: Collaborative...NSF| CRII: SaTC: Energy Efficient Participatory Data Collection Schemes and Context-Aware Incentives for Trustworthy Crowdsensing via Mobile Social Networks ,NSERC ,NSF| I/UCRC CGI: Collaborative Research - I/UCRC for Identification Technology ResearchAuthors: Fazel Anjomshoa; Burak Kantarci;The Internet of Things (IoT) concept is aiming at being an integral part of the next generation networking services by introducing pervasiveness and ubiquitous interconnectivity of uniquely-identifiable objects. The massive availability of personalized smart devices such as smartphones and wearables enable their penetration into the IoT ecosystem with their built-in sensors, particularly in Mobile Crowd-Sensing (MCS) campaigns. The MCS systems achieve the objectives of the large-scale non-dedicated sensing concept in the IoT if a sufficient number of participants are engaged to the collaborative data acquisition process. Therefore, user recruitment is a key challenge in MCS, which requires effective incentivization of cooperative, truthful and trustworthy users. A grand concern for the participants is the battery drain on the mobile devices. It is a known fact that battery drain in a smartphone is a function of the user activity, which can be modeled under various contexts. With this in mind, we propose a new social activity-aware recruitment policy, namely Sociability-Oriented and Battery-Efficient Recruitment for Mobile Crowd-Sensing (SOBER-MCS). SOBER-MCS uses sociability and the residual power of the participant smartphones as two primary criteria in the selection of participating devices. The former is an indicator of the participant willingness toward sensing campaigns, whereas the latter is used to prioritize personal use over crowd-sensing under critical battery levels. We use sociability profiles that were obtained in our previous work and use those values to simulate the sociability behavior of a large pool of participants in an MCS environment. Through simulations, we show that SOBER-MCS is able to introduce battery savings up to 18.5% while improving user and platform utilities by 12% and 20%, respectively.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/5/1593/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/5/1593/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Funded by:NSF | CPS: TTP Option: Synergy:...NSF| CPS: TTP Option: Synergy: Collaborative Research: The Science of Activity-Predictive Cyber-Physical Systems (APCPS)Authors: Cristian Culman; Samaneh Aminikhanghahi; Diane J. Cook;Continuous monitoring of complex activities is valuable for understanding human behavior and providing activity-aware services. At the same time, recognizing these activities requires both movement and location information that can quickly drain batteries on wearable devices. In this paper, we introduce Change Point-based Activity Monitoring (CPAM), an energy-efficient strategy for recognizing and monitoring a range of simple and complex activities in real time. CPAM employs unsupervised change point detection to detect likely activity transition times. By adapting the sampling rate at each change point, CPAM reduces energy consumption by 74.64% while retaining the activity recognition performance of continuous sampling. We validate our approach using smartwatch data collected and labeled by 66 subjects. Results indicate that change point detection techniques can be effective for reducing the energy footprint of sensor-based mobile applications and that automated activity labels can be used to estimate sensor values between sampling periods.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/1/310/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20010310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/1/310/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20010310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Funded by:NSF | RII Track-1: The New Mexi...NSF| RII Track-1: The New Mexico SMART Grid Center: Sustainable, Modular, Adaptive, Resilient, and TransactiveAuthors: Nathan Jackson; Luis A. Rodriguez; Rahul Adhikari;One of the biggest challenges associated with vibration energy harvesters is their limited bandwidth, which reduces their effectiveness when utilized for Internet of Things applications. This paper presents a novel method of increasing the bandwidth of a cantilever beam by using an embedded transverse out-of-plane movable mass, which continuously changes the resonant frequency due to mass change and non-linear dynamic impact forces. The concept was investigated through experimentation of a movable mass, in the form of a solid sphere, that was embedded within a stationary proof mass with hollow cylindrical chambers. As the cantilever oscillated, it caused the movable mass to move out-of-plane, thus effectively altering the overall effective mass of the system during operation. This concept combined high bandwidth non-linear dynamics from the movable mass with the high power linear dynamics from the stationary proof mass. This paper experimentally investigated the frequency and power effects of acceleration, the amount of movable mass, the density of the mass, and the size of the movable mass. The results demonstrated that the bandwidth can be significantly increased from 1.5 Hz to >40 Hz with a transverse movable mass, while maintaining high power output. Dense movable masses are better for high acceleration, low frequency applications, whereas lower density masses are better for low acceleration applications.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/16/5517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21165517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/16/5517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21165517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Collaborative Research: S...NSF| Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching ModulesAuthors: Edward L. Amoruso; Richard Leinecker; Cliff C. Zou;The Windows registry contains a plethora of information in a hierarchical database. It includes system-wide settings, user preferences, installed programs, and recently accessed files and maintains timestamps that can be used to construct a detailed timeline of user activities. However, these data are unencrypted and thus vulnerable to exploitation by malicious actors who gain access to this repository. To address this security and privacy concern, we propose a novel approach that efficiently encrypts and decrypts sensitive registry data in real time. Our developed proof-of-concept program intercepts interactions between the registry’s application programming interfaces (APIs) and other Windows applications using an advanced hooking technique. This enables the proposed system to be transparent to users without requiring any changes to the operating system or installed software. Our approach also implements the data protection API (DPAPI) developed by Microsoft to securely manage each user’s encryption key. Ultimately, our research provides an enhanced security and privacy framework for the Windows registry, effectively fortifying the registry against security and privacy threats while maintaining its accessibility to legitimate users and applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24165106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24165106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Collaborative Research: D...NSF| Collaborative Research: Dynamics of surfactant - amyloid-beta protein interactions during self-assemblyPulak Majumdar; Satyaki Roy; Sudipta Sikdar; Preetam Ghosh; Nirnay Ghosh;Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24206531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24206531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Funded by:NSF | Planning Grant: Engineeri...NSF| Planning Grant: Engineering Research Center for Integrative Manufacturing and Remanufacturing Technologies (iMart) to Spur Rural DevelopmentAuthors: Laraib Khan; Sriram Praneeth Isanaka; Frank Liou;The combination of distributed digital factories (D2Fs) with sustainable practices has been proposed as a revolutionary technique in modern manufacturing. This review paper explores the convergence of D2F with innovative sensor technology, concentrating on the role of Field Programmable Gate Arrays (FPGAs) in promoting this paradigm. A D2F is defined as an integrated framework where digital twins (DTs), sensors, laser additive manufacturing (laser-AM), and subtractive manufacturing (SM) work in synchronization. Here, DTs serve as a virtual replica of physical machines, allowing accurate monitoring and control of a given manufacturing process. These DTs are supplemented by sensors, providing near-real-time data to assure the effectiveness of the manufacturing processes. FPGAs, identified for their re-programmability, reduced power usage, and enhanced processing compared to traditional processors, are increasingly being used to develop near-real-time monitoring systems within manufacturing networks. This review paper identifies the recent expansions in FPGA-based sensors and their exploration within the D2Fs operations. The primary topics incorporate the deployment of eco-efficient data management and near-real-time monitoring, targeted at lowering waste and optimizing resources. The review paper also identifies the future research directions in this field. By incorporating advanced sensors, DTs, laser-AM, and SM processes, this review emphasizes a path toward more sustainable and resilient D2Fs operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24237709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24237709&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:MDPI AG Funded by:NSF | Louisiana EPSCoR Research...NSF| Louisiana EPSCoR Research Infrastructure ImprovementAuthors: Cui, Ling; Murray, Erica;The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity.
Sensors arrow_drop_down SensorsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1424-8220/15/9/24573/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s150924573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1424-8220/15/9/24573/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s150924573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 United States, Italy, Spain, SpainPublisher:MDPI AG Funded by:NSF | IGERT: A New PhD Program ...NSF| IGERT: A New PhD Program in Wind Energy Science, Engineering and PolicyAuthors: Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; +6 AuthorsMeoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo;The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/3/831/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of South Carolina Libraries: Scholar CommonsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.3390/s18030831Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0063.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/3/831/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of South Carolina Libraries: Scholar CommonsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.3390/s18030831Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaDigital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201802.0063.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Funded by:NSF | RII Track-1: The New Mexi...NSF| RII Track-1: The New Mexico SMART Grid Center: Sustainable, Modular, Adaptive, Resilient, and TransactiveAuthors: Fisayo Sangoleye; Nafis Irtija; Eirini Eleni Tsiropoulou;In this article, we address the problem of prolonging the battery life of Internet of Things (IoT) nodes by introducing a smart energy harvesting framework for IoT networks supported by femtocell access points (FAPs) based on the principles of Contract Theory and Reinforcement Learning. Initially, the IoT nodes’ social and physical characteristics are identified and captured through the concept of IoT node types. Then, Contract Theory is adopted to capture the interactions among the FAPs, who provide personalized rewards, i.e., charging power, to the IoT nodes to incentivize them to invest their effort, i.e., transmission power, to report their data to the FAPs. The IoT nodes’ and FAPs’ contract-theoretic utility functions are formulated, following the network economic concept of the involved entities’ personalized profit. A contract-theoretic optimization problem is introduced to determine the optimal personalized contracts among each IoT node connected to a FAP, i.e., a pair of transmission and charging power, aiming to jointly guarantee the optimal satisfaction of all the involved entities in the examined IoT system. An artificial intelligent framework based on reinforcement learning is introduced to support the IoT nodes’ autonomous association to the most beneficial FAP in terms of long-term gained rewards. Finally, a detailed simulation and comparative results are presented to show the pure operation performance of the proposed framework, as well as its drawbacks and benefits, compared to other approaches. Our findings show that the personalized contracts offered to the IoT nodes outperform by a factor of four compared to an agnostic type approach in terms of the achieved IoT system’s social welfare.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/8/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21082755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/8/2755/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21082755&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:MDPI AG Funded by:NSF | Career: Towards Secured a...NSF| Career: Towards Secured and Efficient Energy-based Critical InfrastructureQingyu Yang; Dou An; Wei Yu; Xinyu Yang; Zhengan Tan;Due to the advantage of avoiding upstream disturbance and voltage fluctuation from a power transmission system, Islanded Micro-Grids (IMG) have attracted much attention. In this paper, we first propose a novel self-sufficient Cyber-Physical System (CPS) supported by Internet of Things (IoT) techniques, namely “archipelago micro-grid (MG)”, which integrates the power grid and sensor networks to make the grid operation effective and is comprised of multiple MGs while disconnected with the utility grid. The Electric Vehicles (EVs) are used to replace a portion of Conventional Vehicles (CVs) to reduce CO 2 emission and operation cost. Nonetheless, the intermittent nature and uncertainty of Renewable Energy Sources (RESs) remain a challenging issue in managing energy resources in the system. To address these issues, we formalize the optimal EV penetration problem as a two-stage Stochastic Optimal Penetration (SOP) model, which aims to minimize the emission and operation cost in the system. Uncertainties coming from RESs (e.g., wind, solar, and load demand) are considered in the stochastic model and random parameters to represent those uncertainties are captured by the Monte Carlo-based method. To enable the reasonable deployment of EVs in each MGs, we develop two scheduling schemes, namely Unlimited Coordinated Scheme (UCS) and Limited Coordinated Scheme (LCS), respectively. An extensive simulation study based on a modified 9 bus system with three MGs has been carried out to show the effectiveness of our proposed schemes. The evaluation data indicates that our proposed strategy can reduce both the environmental pollution created by CO 2 emissions and operation costs in UCS and LCS.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/6/907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16060907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/6/907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16060907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:MDPI AG Funded by:NSF | CRII: SaTC: Energy Effici..., NSERC, NSF | I/UCRC CGI: Collaborative...NSF| CRII: SaTC: Energy Efficient Participatory Data Collection Schemes and Context-Aware Incentives for Trustworthy Crowdsensing via Mobile Social Networks ,NSERC ,NSF| I/UCRC CGI: Collaborative Research - I/UCRC for Identification Technology ResearchAuthors: Fazel Anjomshoa; Burak Kantarci;The Internet of Things (IoT) concept is aiming at being an integral part of the next generation networking services by introducing pervasiveness and ubiquitous interconnectivity of uniquely-identifiable objects. The massive availability of personalized smart devices such as smartphones and wearables enable their penetration into the IoT ecosystem with their built-in sensors, particularly in Mobile Crowd-Sensing (MCS) campaigns. The MCS systems achieve the objectives of the large-scale non-dedicated sensing concept in the IoT if a sufficient number of participants are engaged to the collaborative data acquisition process. Therefore, user recruitment is a key challenge in MCS, which requires effective incentivization of cooperative, truthful and trustworthy users. A grand concern for the participants is the battery drain on the mobile devices. It is a known fact that battery drain in a smartphone is a function of the user activity, which can be modeled under various contexts. With this in mind, we propose a new social activity-aware recruitment policy, namely Sociability-Oriented and Battery-Efficient Recruitment for Mobile Crowd-Sensing (SOBER-MCS). SOBER-MCS uses sociability and the residual power of the participant smartphones as two primary criteria in the selection of participating devices. The former is an indicator of the participant willingness toward sensing campaigns, whereas the latter is used to prioritize personal use over crowd-sensing under critical battery levels. We use sociability profiles that were obtained in our previous work and use those values to simulate the sociability behavior of a large pool of participants in an MCS environment. Through simulations, we show that SOBER-MCS is able to introduce battery savings up to 18.5% while improving user and platform utilities by 12% and 20%, respectively.
Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/5/1593/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1424-8220/18/5/1593/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s18051593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Funded by:NSF | CPS: TTP Option: Synergy:...NSF| CPS: TTP Option: Synergy: Collaborative Research: The Science of Activity-Predictive Cyber-Physical Systems (APCPS)Authors: Cristian Culman; Samaneh Aminikhanghahi; Diane J. Cook;Continuous monitoring of complex activities is valuable for understanding human behavior and providing activity-aware services. At the same time, recognizing these activities requires both movement and location information that can quickly drain batteries on wearable devices. In this paper, we introduce Change Point-based Activity Monitoring (CPAM), an energy-efficient strategy for recognizing and monitoring a range of simple and complex activities in real time. CPAM employs unsupervised change point detection to detect likely activity transition times. By adapting the sampling rate at each change point, CPAM reduces energy consumption by 74.64% while retaining the activity recognition performance of continuous sampling. We validate our approach using smartwatch data collected and labeled by 66 subjects. Results indicate that change point detection techniques can be effective for reducing the energy footprint of sensor-based mobile applications and that automated activity labels can be used to estimate sensor values between sampling periods.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/1/310/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20010310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/1/310/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20010310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Funded by:NSF | RII Track-1: The New Mexi...NSF| RII Track-1: The New Mexico SMART Grid Center: Sustainable, Modular, Adaptive, Resilient, and TransactiveAuthors: Nathan Jackson; Luis A. Rodriguez; Rahul Adhikari;One of the biggest challenges associated with vibration energy harvesters is their limited bandwidth, which reduces their effectiveness when utilized for Internet of Things applications. This paper presents a novel method of increasing the bandwidth of a cantilever beam by using an embedded transverse out-of-plane movable mass, which continuously changes the resonant frequency due to mass change and non-linear dynamic impact forces. The concept was investigated through experimentation of a movable mass, in the form of a solid sphere, that was embedded within a stationary proof mass with hollow cylindrical chambers. As the cantilever oscillated, it caused the movable mass to move out-of-plane, thus effectively altering the overall effective mass of the system during operation. This concept combined high bandwidth non-linear dynamics from the movable mass with the high power linear dynamics from the stationary proof mass. This paper experimentally investigated the frequency and power effects of acceleration, the amount of movable mass, the density of the mass, and the size of the movable mass. The results demonstrated that the bandwidth can be significantly increased from 1.5 Hz to >40 Hz with a transverse movable mass, while maintaining high power output. Dense movable masses are better for high acceleration, low frequency applications, whereas lower density masses are better for low acceleration applications.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/16/5517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21165517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/16/5517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21165517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu