- home
- Advanced Search
- Energy Research
- National Science Foundation
- 15. Life on land
- 11. Sustainability
- 2. Zero hunger
- Energy Research
- National Science Foundation
- 15. Life on land
- 11. Sustainability
- 2. Zero hunger
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:NSF | A rapid Assessment of Pos..., NSF | Collaborative Research: B...NSF| A rapid Assessment of Post-fire Changes in Biophysical Variables, Carbon Stocks, and Soil Microbial Processes in the Tallest Angiosperm Forest ,NSF| Collaborative Research: Biophysical and Ecological Constraints on Maximum Tree Height:Insights From the Three Tallest Tree Species.Authors: Stephen C. Sillett; Cameron B. Williams; George W. Koch; Marie E. Antoine;pmid: 25542214
Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 12 Nov 2020Publisher:Dryad Funded by:NSF | BE/CNH: Complex Ecosystem..., NSF | Webs on the Web: Internet..., NSF | CNH: Socio-Ecosystem Dyna... +2 projectsNSF| BE/CNH: Complex Ecosystem Interactions Over Multiple Spatial and Temporal Scales: The Biocomplexity of Sanak Island ,NSF| Webs on the Web: Internet Database, Analysis, and Visualization of Ecological Networks ,NSF| CNH: Socio-Ecosystem Dynamics of Human-Natural Networks on Model Islands ,CO| MAINTENANCE AND RESILIENCE OF FOUNDATIONAL SPECIES TO CLIMATE FLUCTUATIONS: ROLE OF "SUPPORTING" SPECIES INTERACTIONS ,NSF| Semantic Web Informatics for Species in Space and TimeShaw, Jack; Coco, Emily; Wootton, Kate; Daems, Dries; Gillreath-Brown, Andrew; Swain, Anshuman; Dunne, Jennifer;Analyses of ancient food webs reveal important paleoecological processes and responses to a range of perturbations throughout Earth’s history, such as climate change. These responses can inform our forecasts of future biotic responses to similar perturbations. However, previous analyses of ancient food webs rarely accounted for key differences between modern and ancient community data, particularly selective loss of soft-bodied taxa during fossilization. To consider how fossilization impacts inferences of ancient community structure we (1) analyzed node-level attributes to identify correlations between ecological roles and fossilization potential and (2) applied selective information loss procedures to food web data for extant systems. We found that selective loss of soft-bodied organisms has predictable effects on the trophic structure of “artificially fossilized” food webs, because these organisms occupy unique, consistent food web positions. Fossilized food webs misleadingly appear less stable (i.e., more prone to trophic cascades), with less predation and an overrepresentation of generalist consumers. We also found that ecological differences between soft- and hard-bodied taxa—indicated by distinct positions in modern food webs—are recorded in an Early Eocene web, but not in Cambrian webs. This suggests that ecological differences between the groups have existed for ≥ 48 million years. Our results indicate that accounting for soft-bodied taxa is vital for accurate depictions of ancient food webs. However, the consistency of information loss trends across the analyzed food webs means it is possible to predict how the selective loss of soft-bodied taxa affects food web metrics, which can permit better modeling of ancient communities. Repository Contents: Supplementary Information: Containing Supplementary Text, Figures, Tables, and Data descriptions. Supplementary Data 1: Food web data (adjacency matrices and metadata; see publication; see Related Works). Supplementary Data 2: Additional references consulted for preservation group assignments. Supplementary Data 3: Data and R scripts to recreate analyses from this study. S3_AllWebTaxonomy_updated_200903.csv: Taxonomy data for all food web nodes. S3_AnalysisOfTaxonomicRanks.csv: Lowest taxonomic rank for each node. S3_MainFigures_CaimanComparison.R: Compare the three food webs contained in (Roopnarine and Hertog 2013). S3_MainFigures_ComparisonFunctions.R: Functions for calculating metrics and generating trophic species webs. S3_MainFigures_FossilizationFunctions.R: Functions for artificially fossilizing networks. S3_MainFigures_Setup_200826.R: Setup to import food webs. S3_MainFigures_Code.R: Code to apply functions. S3_pbdb_data_200504.csv: Data from the Paleobiology Database, excluding Lagerstätten (see publication). S3_PresGrAssignments_updated_200902.csv: Preservation group assignments for all nodes. Fossil faunal lists were downloaded from the PBDB on 17th January 2020. Any data processing steps are shown in R Scripts and described in publication. Paleobiology Database is licensed under a CC BY 4.0 International License. https://creativecommons.org/licenses/by/4.0/. We analyzed food webs for four modern marine systems, one modern freshwater system, two ancient marine systems, and one ancient lake system from previous publications. All webs have similar, broad higher-rank taxonomic compositions and contain at least 85 nodes (the size of the smallest ancient network considered). For comparisons with ancient diversity, we downloaded fossil occurrences from the Paleobiology Database (PBDB) on 17th January 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.63xsj3v0j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 175 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.63xsj3v0j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NSF | Dimensions: Collaborative..., NSF | Lake Erie Center for Fres..., NSF | DISES: Coproducing Action... +1 projectsNSF| Dimensions: Collaborative Research: The Cyanobacterial Bloom Microbial Interactome as a Model for Understanding Patterns in Functional Biodiversity ,NSF| Lake Erie Center for Fresh Waters and Human Health ,NSF| DISES: Coproducing Actionable Science to Understand, Mitigate, and Adapt to Cyanobacterial Harmful Algal Blooms (CHABS) ,NIH| Lake Erie Center for the Great Lakes and Human HealthAuthors: Brittany N, Zepernick; Steven W, Wilhelm; George S, Bullerjahn; Hans W, Paerl;AbstractBillions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era—starting with the Great Oxidation Event—fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co‐existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater‐marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that “water flows downhill”. Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.
Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:MDPI AG Funded by:NSF | Baltimore Ecosystem Study...NSF| Baltimore Ecosystem Study Phase III: Adaptive Processes in the Baltimore Socio-Ecological System from the Sanitary to the Sustainable CityAuthors: Christine C. Rega-Brodsky; Charles H. Nilon; Paige S. Warren;doi: 10.3390/su10051679
Urban vacant lots are often a contentious feature in cities, seen as overgrown, messy eyesores that plague neighborhoods. We propose a shift in this perception to locations of urban potential, because vacant lots may serve as informal greenspaces that maximize urban biodiversity while satisfying residents’ preferences for their design and use. Our goal was to assess what kind of vacant lots are ecologically valuable by assessing their biotic contents and residents’ preferences within a variety of settings. We surveyed 150 vacant lots throughout Baltimore, Maryland for their plant and bird communities, classified the lot’s setting within the urban matrix, and surveyed residents. Remnant vacant lots had greater vegetative structure and bird species richness as compared to other lot origins, while vacant lot settings had limited effects on their contents. Residents preferred well-maintained lots with more trees and less artificial cover, support of which may increase local biodiversity in vacant lots. Collectively, we propose that vacant lots with a mixture of remnant and planted vegetation can act as sustainable urban greenspaces with the potential for some locations to enhance urban tree cover and bird habitat, while balancing the needs and preferences of city residents.
ScholarWorks@UMassAm... arrow_drop_down ScholarWorks@UMassAmherstArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ScholarWorks@UMassAm... arrow_drop_down ScholarWorks@UMassAmherstArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Funded by:NSF | CAREER: Highly Resolved, ...NSF| CAREER: Highly Resolved, Process-Driven Fossil Fuel Carbon Dioxide Inventory to Advance Carbon Science, Climate Science and 21st Century Decisionmaking and Public EngagementAuthors: Kevin R. Gurney; Jianhua Huang;Abstract Building energy consumption is vulnerable to climate change due to the direct relationship between outside temperature and space cooling/heating. This work quantifies how the relationship between climate change and building energy consumption varies across a range of building types at different spatiotemporal scales based on estimates in 925 U.S. locations. Large increases in building energy consumption are found in the summer (e.g., 39% increase in August for the secondary school building), especially during the daytime (e.g., >100% increase for the warehouse building, 5–6 p.m.), while decreases are found in the winter. At the spatial scale of climate-zones, annual energy consumption changes range from −17% to +21%, while at the local scale, changes range from −20% to +24%. Buildings in the warm-humid (Southeast) climate zones show larger changes than those in other regions. The variation of impact within climate zones can be larger than the variation between climate zones, suggesting a potential bias when estimating climate-zone scale changes with a small number of representative locations. The large variations found in the relationship between climate change and building energy consumption highlight the importance of assessing climate change impacts at local scales, and the need for adaptation/mitigation strategies tailored to different building types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:NSF | Long-Term Ecological Rese..., NSF | LTER: Hubbard Brook Exper...NSF| Long-Term Ecological Research (LTER) at Hubbard Brook Experimental Forest (HBR-LTER) ,NSF| LTER: Hubbard Brook Experimental ForestAimee Van Tatenhove; Emily Filiberti; T. Scott Sillett; Nicholas Rodenhouse; Michael Hallworth;doi: 10.3390/f10020084
Climate change has been linked to distribution shifts and population declines of numerous animal and plant species, particularly in montane ecosystems. The majority of studies suggest both that low-elevation avian and small mammal species are shifting up in elevation and that high-elevation avian communities are either shifting further upslope or relocating completely with an increase in average local temperatures. However, recent research suggests numerous high elevation montane species are either not shifting or are shifting down in elevation despite the local increasing temperature trends, perhaps as a result of the increased precipitation at high elevations. In this study, we examine common vertebrate species distributions across the Hubbard Brook valley in the White Mountain National Forest, including resident and migratory songbirds and small mammals, in relation to historic spring temperature and precipitation. We found no directional change in distributions through time for any of the species. However, we show that the majority of low-elevation bird species in our study area respond to warm spring temperatures by shifting upslope. All bird species that shifted were long-distance migrants. Each low-elevation migrant species responded differently to warm spring temperatures, through upslope distribution expansion, downslope distribution contraction, or total distribution shift upslope. In contrast, we found a majority of high-elevation bird species and both high- and low-elevation mammal species did not shift in response to spring temperature or precipitation and may be subject to more complex climate trends. The heterogeneous response to climate change highlights the need for more comprehensive studies on the subject and careful consideration for appropriate species and habitat management plans in northeastern montane regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10020084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10020084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions US-China: Coll...NSF| Dimensions US-China: Collaborative Research: Allosomes and dioecy in plants as drivers of multi-level biodiversityZhiqiang Lu; Matthew S. Olson; Jianquan Liu; Jianquan Liu; Ming-Shui Zhao; Tao Ma; Xiao-Yong Chen; Zefu Wang; Ying Li; Yongzhi Yang; Cheng-Xin Fu;AbstractIncreased human activity and climate change are driving numerous tree species to endangered status, and in the worst cases extinction. Here we examine the genomic signatures of the critically endangered ironwood treeOstrya rehderianaand its widespread congenerO. chinensis. Both species have similar demographic histories prior to the Last Glacial Maximum (LGM); however, the effective population size ofO. rehderianacontinued to decrease through the last 10,000 years, whereasO. chinensisrecovered to Pre-LGM numbers.O. rehderianaaccumulated more deleterious mutations, but purged more severely deleterious recessive variations than inO. chinensis. This purging and the gradually reduced inbreeding depression together may have mitigated extinction and contributed to the possible future survival of the outcrossingO. rehderiana. Our findings provide critical insights into the evolutionary history of population collapse and the potential for future recovery of the endangered trees.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07913-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07913-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant communityAndrew Nguyen; Nicholas J. Gotelli; Joel D. Parker; Kerri DeNovellis; Skyler Resendez; Sara Helms Cahan; Jeremy D Pustilnik;pmid: 28439669
Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.
Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Coastal SEES Collaborativ..., SNSF | Ocean extremes in a warme..., SNSF | Frontiers in pancreatic p... +1 projectsNSF| Coastal SEES Collaborative Research: Adaptations of fish and fishing communities to rapid climate change ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,SNSF| Frontiers in pancreatic physiology: Physiology and cell biology of the human acinar cell (workshop) ,NSF| OCE-PRF Track 1 (Broadening Participation): The influence of predator-prey interactions on climate-induced range shifts in marine communitiesSelden, Rebecca L.; Morley, James W.; Latour, Robert J.; Frölicher, Thomas L.; Seagraves, Richard J.; Pinsky, Malin L.;pmid: 29768423
pmc: PMC5955691
Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 230 citations 230 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:NSF | A rapid Assessment of Pos..., NSF | Collaborative Research: B...NSF| A rapid Assessment of Post-fire Changes in Biophysical Variables, Carbon Stocks, and Soil Microbial Processes in the Tallest Angiosperm Forest ,NSF| Collaborative Research: Biophysical and Ecological Constraints on Maximum Tree Height:Insights From the Three Tallest Tree Species.Authors: Stephen C. Sillett; Cameron B. Williams; George W. Koch; Marie E. Antoine;pmid: 25542214
Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 12 Nov 2020Publisher:Dryad Funded by:NSF | BE/CNH: Complex Ecosystem..., NSF | Webs on the Web: Internet..., NSF | CNH: Socio-Ecosystem Dyna... +2 projectsNSF| BE/CNH: Complex Ecosystem Interactions Over Multiple Spatial and Temporal Scales: The Biocomplexity of Sanak Island ,NSF| Webs on the Web: Internet Database, Analysis, and Visualization of Ecological Networks ,NSF| CNH: Socio-Ecosystem Dynamics of Human-Natural Networks on Model Islands ,CO| MAINTENANCE AND RESILIENCE OF FOUNDATIONAL SPECIES TO CLIMATE FLUCTUATIONS: ROLE OF "SUPPORTING" SPECIES INTERACTIONS ,NSF| Semantic Web Informatics for Species in Space and TimeShaw, Jack; Coco, Emily; Wootton, Kate; Daems, Dries; Gillreath-Brown, Andrew; Swain, Anshuman; Dunne, Jennifer;Analyses of ancient food webs reveal important paleoecological processes and responses to a range of perturbations throughout Earth’s history, such as climate change. These responses can inform our forecasts of future biotic responses to similar perturbations. However, previous analyses of ancient food webs rarely accounted for key differences between modern and ancient community data, particularly selective loss of soft-bodied taxa during fossilization. To consider how fossilization impacts inferences of ancient community structure we (1) analyzed node-level attributes to identify correlations between ecological roles and fossilization potential and (2) applied selective information loss procedures to food web data for extant systems. We found that selective loss of soft-bodied organisms has predictable effects on the trophic structure of “artificially fossilized” food webs, because these organisms occupy unique, consistent food web positions. Fossilized food webs misleadingly appear less stable (i.e., more prone to trophic cascades), with less predation and an overrepresentation of generalist consumers. We also found that ecological differences between soft- and hard-bodied taxa—indicated by distinct positions in modern food webs—are recorded in an Early Eocene web, but not in Cambrian webs. This suggests that ecological differences between the groups have existed for ≥ 48 million years. Our results indicate that accounting for soft-bodied taxa is vital for accurate depictions of ancient food webs. However, the consistency of information loss trends across the analyzed food webs means it is possible to predict how the selective loss of soft-bodied taxa affects food web metrics, which can permit better modeling of ancient communities. Repository Contents: Supplementary Information: Containing Supplementary Text, Figures, Tables, and Data descriptions. Supplementary Data 1: Food web data (adjacency matrices and metadata; see publication; see Related Works). Supplementary Data 2: Additional references consulted for preservation group assignments. Supplementary Data 3: Data and R scripts to recreate analyses from this study. S3_AllWebTaxonomy_updated_200903.csv: Taxonomy data for all food web nodes. S3_AnalysisOfTaxonomicRanks.csv: Lowest taxonomic rank for each node. S3_MainFigures_CaimanComparison.R: Compare the three food webs contained in (Roopnarine and Hertog 2013). S3_MainFigures_ComparisonFunctions.R: Functions for calculating metrics and generating trophic species webs. S3_MainFigures_FossilizationFunctions.R: Functions for artificially fossilizing networks. S3_MainFigures_Setup_200826.R: Setup to import food webs. S3_MainFigures_Code.R: Code to apply functions. S3_pbdb_data_200504.csv: Data from the Paleobiology Database, excluding Lagerstätten (see publication). S3_PresGrAssignments_updated_200902.csv: Preservation group assignments for all nodes. Fossil faunal lists were downloaded from the PBDB on 17th January 2020. Any data processing steps are shown in R Scripts and described in publication. Paleobiology Database is licensed under a CC BY 4.0 International License. https://creativecommons.org/licenses/by/4.0/. We analyzed food webs for four modern marine systems, one modern freshwater system, two ancient marine systems, and one ancient lake system from previous publications. All webs have similar, broad higher-rank taxonomic compositions and contain at least 85 nodes (the size of the smallest ancient network considered). For comparisons with ancient diversity, we downloaded fossil occurrences from the Paleobiology Database (PBDB) on 17th January 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.63xsj3v0j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 175 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.63xsj3v0j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NSF | Dimensions: Collaborative..., NSF | Lake Erie Center for Fres..., NSF | DISES: Coproducing Action... +1 projectsNSF| Dimensions: Collaborative Research: The Cyanobacterial Bloom Microbial Interactome as a Model for Understanding Patterns in Functional Biodiversity ,NSF| Lake Erie Center for Fresh Waters and Human Health ,NSF| DISES: Coproducing Actionable Science to Understand, Mitigate, and Adapt to Cyanobacterial Harmful Algal Blooms (CHABS) ,NIH| Lake Erie Center for the Great Lakes and Human HealthAuthors: Brittany N, Zepernick; Steven W, Wilhelm; George S, Bullerjahn; Hans W, Paerl;AbstractBillions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era—starting with the Great Oxidation Event—fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co‐existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater‐marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that “water flows downhill”. Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.
Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental Microbiology ReportsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1758-2229.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:MDPI AG Funded by:NSF | Baltimore Ecosystem Study...NSF| Baltimore Ecosystem Study Phase III: Adaptive Processes in the Baltimore Socio-Ecological System from the Sanitary to the Sustainable CityAuthors: Christine C. Rega-Brodsky; Charles H. Nilon; Paige S. Warren;doi: 10.3390/su10051679
Urban vacant lots are often a contentious feature in cities, seen as overgrown, messy eyesores that plague neighborhoods. We propose a shift in this perception to locations of urban potential, because vacant lots may serve as informal greenspaces that maximize urban biodiversity while satisfying residents’ preferences for their design and use. Our goal was to assess what kind of vacant lots are ecologically valuable by assessing their biotic contents and residents’ preferences within a variety of settings. We surveyed 150 vacant lots throughout Baltimore, Maryland for their plant and bird communities, classified the lot’s setting within the urban matrix, and surveyed residents. Remnant vacant lots had greater vegetative structure and bird species richness as compared to other lot origins, while vacant lot settings had limited effects on their contents. Residents preferred well-maintained lots with more trees and less artificial cover, support of which may increase local biodiversity in vacant lots. Collectively, we propose that vacant lots with a mixture of remnant and planted vegetation can act as sustainable urban greenspaces with the potential for some locations to enhance urban tree cover and bird habitat, while balancing the needs and preferences of city residents.
ScholarWorks@UMassAm... arrow_drop_down ScholarWorks@UMassAmherstArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ScholarWorks@UMassAm... arrow_drop_down ScholarWorks@UMassAmherstArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Funded by:NSF | CAREER: Highly Resolved, ...NSF| CAREER: Highly Resolved, Process-Driven Fossil Fuel Carbon Dioxide Inventory to Advance Carbon Science, Climate Science and 21st Century Decisionmaking and Public EngagementAuthors: Kevin R. Gurney; Jianhua Huang;Abstract Building energy consumption is vulnerable to climate change due to the direct relationship between outside temperature and space cooling/heating. This work quantifies how the relationship between climate change and building energy consumption varies across a range of building types at different spatiotemporal scales based on estimates in 925 U.S. locations. Large increases in building energy consumption are found in the summer (e.g., 39% increase in August for the secondary school building), especially during the daytime (e.g., >100% increase for the warehouse building, 5–6 p.m.), while decreases are found in the winter. At the spatial scale of climate-zones, annual energy consumption changes range from −17% to +21%, while at the local scale, changes range from −20% to +24%. Buildings in the warm-humid (Southeast) climate zones show larger changes than those in other regions. The variation of impact within climate zones can be larger than the variation between climate zones, suggesting a potential bias when estimating climate-zone scale changes with a small number of representative locations. The large variations found in the relationship between climate change and building energy consumption highlight the importance of assessing climate change impacts at local scales, and the need for adaptation/mitigation strategies tailored to different building types.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.05.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:NSF | Long-Term Ecological Rese..., NSF | LTER: Hubbard Brook Exper...NSF| Long-Term Ecological Research (LTER) at Hubbard Brook Experimental Forest (HBR-LTER) ,NSF| LTER: Hubbard Brook Experimental ForestAimee Van Tatenhove; Emily Filiberti; T. Scott Sillett; Nicholas Rodenhouse; Michael Hallworth;doi: 10.3390/f10020084
Climate change has been linked to distribution shifts and population declines of numerous animal and plant species, particularly in montane ecosystems. The majority of studies suggest both that low-elevation avian and small mammal species are shifting up in elevation and that high-elevation avian communities are either shifting further upslope or relocating completely with an increase in average local temperatures. However, recent research suggests numerous high elevation montane species are either not shifting or are shifting down in elevation despite the local increasing temperature trends, perhaps as a result of the increased precipitation at high elevations. In this study, we examine common vertebrate species distributions across the Hubbard Brook valley in the White Mountain National Forest, including resident and migratory songbirds and small mammals, in relation to historic spring temperature and precipitation. We found no directional change in distributions through time for any of the species. However, we show that the majority of low-elevation bird species in our study area respond to warm spring temperatures by shifting upslope. All bird species that shifted were long-distance migrants. Each low-elevation migrant species responded differently to warm spring temperatures, through upslope distribution expansion, downslope distribution contraction, or total distribution shift upslope. In contrast, we found a majority of high-elevation bird species and both high- and low-elevation mammal species did not shift in response to spring temperature or precipitation and may be subject to more complex climate trends. The heterogeneous response to climate change highlights the need for more comprehensive studies on the subject and careful consideration for appropriate species and habitat management plans in northeastern montane regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10020084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10020084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions US-China: Coll...NSF| Dimensions US-China: Collaborative Research: Allosomes and dioecy in plants as drivers of multi-level biodiversityZhiqiang Lu; Matthew S. Olson; Jianquan Liu; Jianquan Liu; Ming-Shui Zhao; Tao Ma; Xiao-Yong Chen; Zefu Wang; Ying Li; Yongzhi Yang; Cheng-Xin Fu;AbstractIncreased human activity and climate change are driving numerous tree species to endangered status, and in the worst cases extinction. Here we examine the genomic signatures of the critically endangered ironwood treeOstrya rehderianaand its widespread congenerO. chinensis. Both species have similar demographic histories prior to the Last Glacial Maximum (LGM); however, the effective population size ofO. rehderianacontinued to decrease through the last 10,000 years, whereasO. chinensisrecovered to Pre-LGM numbers.O. rehderianaaccumulated more deleterious mutations, but purged more severely deleterious recessive variations than inO. chinensis. This purging and the gradually reduced inbreeding depression together may have mitigated extinction and contributed to the possible future survival of the outcrossingO. rehderiana. Our findings provide critical insights into the evolutionary history of population collapse and the potential for future recovery of the endangered trees.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07913-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07913-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant communityAndrew Nguyen; Nicholas J. Gotelli; Joel D. Parker; Kerri DeNovellis; Skyler Resendez; Sara Helms Cahan; Jeremy D Pustilnik;pmid: 28439669
Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.
Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Comparati... arrow_drop_down Journal of Comparative Physiology BArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00360-017-1101-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Embargo end date: 01 Jan 2014 Switzerland, Germany, Netherlands, DenmarkPublisher:Copernicus GmbH Funded by:NSERC, NSF | BE/CBC: Biocomplexity Ass..., NSF | Fire in Northern Alaska: ... +4 projectsNSERC ,NSF| BE/CBC: Biocomplexity Associated with the Response of Tundra Carbon Balance to Warming and Drying Across Multiple Spatial and Temporal Scales ,NSF| Fire in Northern Alaska: Effect of a Changing Disturbance Regime on a Regional Macrosystem ,RCN| Greenhouse gases in the North: from local to regional scale ,NWO| Stability of carbon pools in far east Siberia ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| GREENCYCLESIIAuthors: Birger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; +16 AuthorsBirger Ulf Hansen; Marcin Jackowicz-Korczynski; Torsten Sachs; Peter M. Lafleur; Torben R. Christensen; Torben R. Christensen; Walter C. Oechel; Lars Kutzbach; Adrian V. Rocha; Werner Eugster; Magnus Lund; M. K. van der Molen; Mika Aurela; Thomas Friborg; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Elyn Humphreys; Daniel P. Rasse; Mikkel P. Tamstorf; Herbert N. Mbufong;Abstract. This paper aims to assess the spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC) parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Peak season data were collected during different years (between 1998 and 2010) using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE) using an NEE–irradiance model. Parameters from LRCs represent site-specific traits and characteristics describing the following: (a) NEE at light saturation (Fcsat), (b) dark respiration (Rd), (c) light use efficiency (α), (d) NEE when light is at 1000 μmol m−2 s−1 (Fc1000), (e) potential photosynthesis at light saturation (Psat) and (f) the light compensation point (LCP). Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. We did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, leaf area index (LAI) and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than were assimilation parameters. This indicates the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.
GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down https://doi.org/10.5194/bgd-11...Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4897-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 United StatesPublisher:Public Library of Science (PLoS) Funded by:NSF | Coastal SEES Collaborativ..., SNSF | Ocean extremes in a warme..., SNSF | Frontiers in pancreatic p... +1 projectsNSF| Coastal SEES Collaborative Research: Adaptations of fish and fishing communities to rapid climate change ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,SNSF| Frontiers in pancreatic physiology: Physiology and cell biology of the human acinar cell (workshop) ,NSF| OCE-PRF Track 1 (Broadening Participation): The influence of predator-prey interactions on climate-induced range shifts in marine communitiesSelden, Rebecca L.; Morley, James W.; Latour, Robert J.; Frölicher, Thomas L.; Seagraves, Richard J.; Pinsky, Malin L.;pmid: 29768423
pmc: PMC5955691
Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 230 citations 230 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0196127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu