Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
95 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 7. Clean energy
  • 13. Climate action
  • 12. Responsible consumption
  • University of North Texas

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Christian Brannstrom; Matthew Fry;

    Abstract Beginning in the 2000s, the Dallas-Fort Worth metropolitan region became home to the world's largest and longest experiment in urban shale gas production, with 25,182 drilling permits issued from 2000 to 2016 in the Barnett Shale. Urban hydrocarbon governance centered on establishing statutory setback distances between drilling sites and nearest houses or other protected uses. Here we analyze qualitative interview data obtained with a rigorous sampling frame to examine processes and outcomes of municipal-level hydrocarbon governance. We find that early municipal responses (2001–2002) revealed lack of technical expertise to respond to unconventional drilling and production. Controversial wells, which residents considered too close to houses, focused governance debates in several municipalities. Municipal policymakers reported that protecting public health and safety were top priorities in determining setbacks. After 2003, policymakers copied ordinance language from neighboring municipalities and established task forces and working groups to reduce political tensions. The role of the hydrocarbon industry included frequent claims seeking to exploit the longstanding separation of mineral and property estates, which encouraged municipalities to reduce setbacks and lower potential exposure to regulatory takings lawsuits. Over time, municipal regulatory power in hydrocarbon governance decreased while industry power increased, offering several implications for corporate responsibility and social license debates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Svetlana Pevnitskaya; Omer T. Karaguzel; Thomas Spiegelhalter; Chien-fei Chen; +15 Authors

    This paper contributes an inclusive review of scientific studies in the field of sustainable human building ecosystems (SHBEs). Reducing energy consumption by making buildings more energy efficient has been touted as an easily attainable approach to promoting carbon-neutral energy societies. Yet, despite significant progress in research and technology development, for new buildings, as energy codes are getting more stringent, more and more technologies, e.g., LED lighting, VRF systems, smart plugs, occupancy-based controls, are used. Nevertheless, the adoption of energy efficient measures in buildings is still limited in the larger context of the developing countries and middle income/low-income population. The objective of Sustainable Human Building Ecosystem Research Coordination Network (SHBE-RCN) is to expand synergistic investigative podium in order to subdue barriers in engineering, architectural design, social and economic perspectives that hinder wider application, adoption and subsequent performance of sustainable building solutions by recognizing the essential role of human behaviors within building-scale ecosystems. Expected long-term outcomes of SHBE-RCN are collaborative ideas for transformative technologies, designs and methods of adoption for future design, construction and operation of sustainable buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers in Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Frontiers in Energy
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers in Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Frontiers in Energy
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: De Steese, J. G.; Dagle, J. E.; Kreid, D. K.; Haner, J. M.; +1 Authors

    Abstract The inherently high storage efficiency, instantaneous dispatch capability, and multifunction uses of superconducting magnetic energy storage (SMES) are attributes that gives it the potential for widespread application in the electric utility industry. Opportunities appear to exist where SMES at a given location could provide multiple benefits either simultaneously or sequentially as system conditions dictate. These benefits, including diurnal storage and system stability and dynamics cotnrol enhancement, increase the application potential of SMES to a larger number of opportunities than might be justified by the value of its diurnal storage capability alone. However, the benefits an individual utility may realized from SMES applications are strongly influenced by the characteristics of the utility system, the location of the SMES unti, and the timing of its installation in the system. Such benefits are typically not evaluated adequately in generic studies. This paper summarizes results of case studies performed by Pacific Northwest Laboratory (PNL) with funding provided by the Bonnevillle Power Administration (BPA) and the Electric Power Research Institute (EPRI). The derivation of SMES benefits and costs are described and benefit/cost (B/C) ratios are compared in system-specific scenarios of intereste to BPA. Results of using the DYNASTORE production cost model show the sensitivity of B/C ratios to SMES capacity and power and to the forecast system load. Intermediate-size SMES applications, which primarily provide system stability and dynamic control enhancement are reveiwed. The potential for SMES to levelize the output of a wind energy complex is also assessed. Most of the cases show SMES to provide a positive net benefit with the additional, sometimes surprising indication, that B/C ratios and net present worth of intermediate-size units can exceed those of larger systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Superconduct...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Superconductivity
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    3
    citations3
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Superconduct...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Superconductivity
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Asano, Yoshihiro; Liu, James C.; Rokni, Sayed;

    Differences in synchrotron radiation beamline shielding design between the facilities of 3 GeV class and 8 GeV class are discussed with regard to SLAC SSRL and SPring-8 beamlines. Requirements of beamline shielding as well as the accelerator shielding depend on the stored electron energy, and here some factors in beamline shielding depending on the stored energy in particular, are clarified, namely the effect of build up, the effect of double scattering of photons at branch beamlines, and the spread of gas bremsstrahlung.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radiation Measuremen...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radiation Measurements
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radiation Measuremen...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radiation Measurements
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ting-zhen Ming; Ting-zhen Ming; Yong-X. Tao; Zhong-Ren Peng; +3 Authors

    Abstract Urban renewal has become a key issue all through China's Transitional Period. The social, economic, political factors, and their correlations have been seriously considered. However, the effects of outdoor pedestrian thermal comfort and fluid ventilation effects as well as the residence living conditions in old city districts under urban reconstruction should, to some extent, be paid closer attention to. As an example, take an old city district in Wuhan where a comprehensive mathematical model describing the fluid flow and heat transfer characteristics has been presented. Considering the influences of ambient crosswind, solar radiation, and natural convection and radiation heat transfer, numerical analysis based on the original layout has been executed. By analyzing the temperature and velocity distributions of the old city district, a new planned layout has been presented in this research. By comparison, some basic rules have been advanced to achieve favorable thermal comfort and flow ventilation effects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    There have been a number of comprehensive and detailed studies on the question of what climate change might do to agriculture (Parry et al., 1988; Smith and Tirpak, 1989; Rosenberg, 1993; Council on Agricultural science and Technology (CAST), 1992; Houghton et al, 1990, 1992; National Academy of Sciences, 1992; and others). The potential for adaptation of agriculture to climate change has been evaluated in a number of these studies and in Rosenberg (1992). There has been, however, little if any systematic analysis of how attempts to mitigate or avoid climate change might affect agriculture. Our aim in this paper is to explore this question. Data and analyses on which to draw are limited, so the results of our exploration are preliminary, at best.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Environmental...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Environmental Change
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 1996 . Peer-reviewed
    Data sources: Crossref
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Environmental...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Environmental Change
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 1996 . Peer-reviewed
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lee, A. D.; Onisko, S. A.;

    Abstract Energy-efficiency investments that are costeffective to utilities may not be cost-effective to their customers if the customers have to bear the full investment cost. Utilities must find creative ways to make energy-efficiency investments more attractive to utility customers. An innovative utility manufactured (mobile) home energy conservation programme is described to illustrate how differences in the economic perspectives of consumers and utilities can be used to design energy-efficiency programmes. This successful programme uses ‘conservation acquisition’ to make the investment attractive to manufacturers, utilities, and the consumer. The programme and framework presented here provide models for developing other energy-efficiency programmes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utilities Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Utilities Policy
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utilities Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Utilities Policy
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jailos Lubinda; Ubydul Haque; Yaxin Bi; Muhammad Yousaf Shad; +3 Authors

    In the last decade, many malaria-endemic countries, like Zambia, have achieved significant reductions in malaria incidence among children <5 years old but face ongoing challenges in achieving similar progress against malaria in older age groups. In parts of Zambia, changing climatic and environmental factors are among those suspectedly behind high malaria incidence. Changes and variations in these factors potentially interfere with intervention program effectiveness and alter the distribution and incidence patterns of malaria differentially between young children and the rest of the population. We used parametric and non-parametric statistics to model the effects of climatic and socio-demographic variables on age-specific malaria incidence vis-à-vis control interventions. Linear regressions, mixed models, and Mann-Kendall tests were implemented to explore trends, changes in trends, and regress malaria incidence against environmental and intervention variables. Our study shows that while climate parameters affect the whole population, their impacts are felt most by people aged ≥5 years. Climate variables influenced malaria substantially more than mosquito nets and indoor residual spraying interventions. We establish that climate parameters negatively impact malaria control efforts by exacerbating the transmission conditions via more conducive temperature and rainfall environments, which are augmented by cultural and socioeconomic exposure mechanisms. We argue that an intensified communications and education intervention strategy for behavioural change specifically targeted at ≥5 aged population where incidence rates are increasing, is urgently required and call for further malaria stratification among the ≥5 age groups in the routine collection, analysis and reporting of malaria mortality and incidence data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Baarmand, Marc M.;

    Abstract The CDF and DO experiments have measured b b production in p p interactions at √s = 1800 GeV and 630 GeV (the energy at which the previous measurement was performed by the UA1 experiment). The Tevatron measurements are used to evaluate, for the first time, the center-of-mass energy and rapidity dependence of b-quark production cross section measured with the same detectors. Preliminary results from these measurements are presented and compared with the next-to-leading order QCD predictions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Physics B - ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nuclear Physics B - Proceedings Supplements
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Physics B - ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nuclear Physics B - Proceedings Supplements
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shuryak, E.V.;

    Excited hadronic matter in the temperature interval $T=100\ensuremath{-}200$ MeV is not an ideal pion gas, but rather a liquid, in which attractive interaction among particles plays an important role. The pion dispersion curve is in this case essentially modified by a kind of collective momentum-dependent potential, which becomes important as the "quasipion" comes to the boundary of the system. We show that these effects can provide an explanation for a number of recent experimental puzzles, in particular, for the observed copious production of soft pions and soft photons in high-energy hadronic reactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1103/physre...
    Article . 1990 . Peer-reviewed
    License: APS Licenses for Journal Article Re-use
    Data sources: Crossref
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1103/physre...
      Article . 1990 . Peer-reviewed
      License: APS Licenses for Journal Article Re-use
      Data sources: Crossref
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
95 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Christian Brannstrom; Matthew Fry;

    Abstract Beginning in the 2000s, the Dallas-Fort Worth metropolitan region became home to the world's largest and longest experiment in urban shale gas production, with 25,182 drilling permits issued from 2000 to 2016 in the Barnett Shale. Urban hydrocarbon governance centered on establishing statutory setback distances between drilling sites and nearest houses or other protected uses. Here we analyze qualitative interview data obtained with a rigorous sampling frame to examine processes and outcomes of municipal-level hydrocarbon governance. We find that early municipal responses (2001–2002) revealed lack of technical expertise to respond to unconventional drilling and production. Controversial wells, which residents considered too close to houses, focused governance debates in several municipalities. Municipal policymakers reported that protecting public health and safety were top priorities in determining setbacks. After 2003, policymakers copied ordinance language from neighboring municipalities and established task forces and working groups to reduce political tensions. The role of the hydrocarbon industry included frequent claims seeking to exploit the longstanding separation of mineral and property estates, which encouraged municipalities to reduce setbacks and lower potential exposure to regulatory takings lawsuits. Over time, municipal regulatory power in hydrocarbon governance decreased while industry power increased, offering several implications for corporate responsibility and social license debates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Svetlana Pevnitskaya; Omer T. Karaguzel; Thomas Spiegelhalter; Chien-fei Chen; +15 Authors

    This paper contributes an inclusive review of scientific studies in the field of sustainable human building ecosystems (SHBEs). Reducing energy consumption by making buildings more energy efficient has been touted as an easily attainable approach to promoting carbon-neutral energy societies. Yet, despite significant progress in research and technology development, for new buildings, as energy codes are getting more stringent, more and more technologies, e.g., LED lighting, VRF systems, smart plugs, occupancy-based controls, are used. Nevertheless, the adoption of energy efficient measures in buildings is still limited in the larger context of the developing countries and middle income/low-income population. The objective of Sustainable Human Building Ecosystem Research Coordination Network (SHBE-RCN) is to expand synergistic investigative podium in order to subdue barriers in engineering, architectural design, social and economic perspectives that hinder wider application, adoption and subsequent performance of sustainable building solutions by recognizing the essential role of human behaviors within building-scale ecosystems. Expected long-term outcomes of SHBE-RCN are collaborative ideas for transformative technologies, designs and methods of adoption for future design, construction and operation of sustainable buildings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers in Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Frontiers in Energy
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Frontiers in Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Frontiers in Energy
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: De Steese, J. G.; Dagle, J. E.; Kreid, D. K.; Haner, J. M.; +1 Authors

    Abstract The inherently high storage efficiency, instantaneous dispatch capability, and multifunction uses of superconducting magnetic energy storage (SMES) are attributes that gives it the potential for widespread application in the electric utility industry. Opportunities appear to exist where SMES at a given location could provide multiple benefits either simultaneously or sequentially as system conditions dictate. These benefits, including diurnal storage and system stability and dynamics cotnrol enhancement, increase the application potential of SMES to a larger number of opportunities than might be justified by the value of its diurnal storage capability alone. However, the benefits an individual utility may realized from SMES applications are strongly influenced by the characteristics of the utility system, the location of the SMES unti, and the timing of its installation in the system. Such benefits are typically not evaluated adequately in generic studies. This paper summarizes results of case studies performed by Pacific Northwest Laboratory (PNL) with funding provided by the Bonnevillle Power Administration (BPA) and the Electric Power Research Institute (EPRI). The derivation of SMES benefits and costs are described and benefit/cost (B/C) ratios are compared in system-specific scenarios of intereste to BPA. Results of using the DYNASTORE production cost model show the sensitivity of B/C ratios to SMES capacity and power and to the forecast system load. Intermediate-size SMES applications, which primarily provide system stability and dynamic control enhancement are reveiwed. The potential for SMES to levelize the output of a wind energy complex is also assessed. Most of the cases show SMES to provide a positive net benefit with the additional, sometimes surprising indication, that B/C ratios and net present worth of intermediate-size units can exceed those of larger systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Superconduct...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Superconductivity
    Article . 1993 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    3
    citations3
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Superconduct...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Superconductivity
      Article . 1993 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Asano, Yoshihiro; Liu, James C.; Rokni, Sayed;

    Differences in synchrotron radiation beamline shielding design between the facilities of 3 GeV class and 8 GeV class are discussed with regard to SLAC SSRL and SPring-8 beamlines. Requirements of beamline shielding as well as the accelerator shielding depend on the stored electron energy, and here some factors in beamline shielding depending on the stored energy in particular, are clarified, namely the effect of build up, the effect of double scattering of photons at branch beamlines, and the spread of gas bremsstrahlung.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radiation Measuremen...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radiation Measurements
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radiation Measuremen...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radiation Measurements
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ting-zhen Ming; Ting-zhen Ming; Yong-X. Tao; Zhong-Ren Peng; +3 Authors

    Abstract Urban renewal has become a key issue all through China's Transitional Period. The social, economic, political factors, and their correlations have been seriously considered. However, the effects of outdoor pedestrian thermal comfort and fluid ventilation effects as well as the residence living conditions in old city districts under urban reconstruction should, to some extent, be paid closer attention to. As an example, take an old city district in Wuhan where a comprehensive mathematical model describing the fluid flow and heat transfer characteristics has been presented. Considering the influences of ambient crosswind, solar radiation, and natural convection and radiation heat transfer, numerical analysis based on the original layout has been executed. By analyzing the temperature and velocity distributions of the old city district, a new planned layout has been presented in this research. By comparison, some basic rules have been advanced to achieve favorable thermal comfort and flow ventilation effects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    There have been a number of comprehensive and detailed studies on the question of what climate change might do to agriculture (Parry et al., 1988; Smith and Tirpak, 1989; Rosenberg, 1993; Council on Agricultural science and Technology (CAST), 1992; Houghton et al, 1990, 1992; National Academy of Sciences, 1992; and others). The potential for adaptation of agriculture to climate change has been evaluated in a number of these studies and in Rosenberg (1992). There has been, however, little if any systematic analysis of how attempts to mitigate or avoid climate change might affect agriculture. Our aim in this paper is to explore this question. Data and analyses on which to draw are limited, so the results of our exploration are preliminary, at best.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Environmental...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Environmental Change
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 1996 . Peer-reviewed
    Data sources: Crossref
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Environmental...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Environmental Change
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 1996 . Peer-reviewed
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lee, A. D.; Onisko, S. A.;

    Abstract Energy-efficiency investments that are costeffective to utilities may not be cost-effective to their customers if the customers have to bear the full investment cost. Utilities must find creative ways to make energy-efficiency investments more attractive to utility customers. An innovative utility manufactured (mobile) home energy conservation programme is described to illustrate how differences in the economic perspectives of consumers and utilities can be used to design energy-efficiency programmes. This successful programme uses ‘conservation acquisition’ to make the investment attractive to manufacturers, utilities, and the consumer. The programme and framework presented here provide models for developing other energy-efficiency programmes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utilities Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Utilities Policy
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utilities Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Utilities Policy
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jailos Lubinda; Ubydul Haque; Yaxin Bi; Muhammad Yousaf Shad; +3 Authors

    In the last decade, many malaria-endemic countries, like Zambia, have achieved significant reductions in malaria incidence among children <5 years old but face ongoing challenges in achieving similar progress against malaria in older age groups. In parts of Zambia, changing climatic and environmental factors are among those suspectedly behind high malaria incidence. Changes and variations in these factors potentially interfere with intervention program effectiveness and alter the distribution and incidence patterns of malaria differentially between young children and the rest of the population. We used parametric and non-parametric statistics to model the effects of climatic and socio-demographic variables on age-specific malaria incidence vis-à-vis control interventions. Linear regressions, mixed models, and Mann-Kendall tests were implemented to explore trends, changes in trends, and regress malaria incidence against environmental and intervention variables. Our study shows that while climate parameters affect the whole population, their impacts are felt most by people aged ≥5 years. Climate variables influenced malaria substantially more than mosquito nets and indoor residual spraying interventions. We establish that climate parameters negatively impact malaria control efforts by exacerbating the transmission conditions via more conducive temperature and rainfall environments, which are augmented by cultural and socioeconomic exposure mechanisms. We argue that an intensified communications and education intervention strategy for behavioural change specifically targeted at ≥5 aged population where incidence rates are increasing, is urgently required and call for further malaria stratification among the ≥5 age groups in the routine collection, analysis and reporting of malaria mortality and incidence data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Baarmand, Marc M.;

    Abstract The CDF and DO experiments have measured b b production in p p interactions at √s = 1800 GeV and 630 GeV (the energy at which the previous measurement was performed by the UA1 experiment). The Tevatron measurements are used to evaluate, for the first time, the center-of-mass energy and rapidity dependence of b-quark production cross section measured with the same detectors. Preliminary results from these measurements are presented and compared with the next-to-leading order QCD predictions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Physics B - ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nuclear Physics B - Proceedings Supplements
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Physics B - ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nuclear Physics B - Proceedings Supplements
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shuryak, E.V.;

    Excited hadronic matter in the temperature interval $T=100\ensuremath{-}200$ MeV is not an ideal pion gas, but rather a liquid, in which attractive interaction among particles plays an important role. The pion dispersion curve is in this case essentially modified by a kind of collective momentum-dependent potential, which becomes important as the "quasipion" comes to the boundary of the system. We show that these effects can provide an explanation for a number of recent experimental puzzles, in particular, for the observed copious production of soft pions and soft photons in high-energy hadronic reactions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1103/physre...
    Article . 1990 . Peer-reviewed
    License: APS Licenses for Journal Article Re-use
    Data sources: Crossref
    68
    citations68
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1103/physre...
      Article . 1990 . Peer-reviewed
      License: APS Licenses for Journal Article Re-use
      Data sources: Crossref