Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Source
  • Research community
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
178 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 12. Responsible consumption
  • UNSW Sydney

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Pablo Alvarez-Gaitan; Jinming Duan; Christopher P. Saint; Fang Liu; +6 Authors

    Abstract: After the implementation of a biofuel target in 2017, China, the second largest consumer of oil in the world, accelerated the development of lignocellulosic biomass technology to produce ethanol and minimized food security risks commonly associated with first generation biofuel production. In this study, Life Cycle Assessment (LCA) is used to investigate three new lignocellulosic biomass refinery systems based on corncob which co-produce ethanol with chemicals and energy. The bioethanol is used in E10 and E85 biofuel mixes and these are compared with a fossil gasoline reference system. Using 1 km distance driven by a compact size flexible fuel passenger vehicle as the functional unit and a exergy allocation approach to the raw material inputs and to the co-products in the simulated multifunctional biorefinery processes, the results indicate that regardless of the configuration of the ethanol-biorefinery, ethanol-blended fuels performed better than gasoline in terms of fossil fuels depletion (E10 6% lower; E85 64–70% lower), global warming potential (E10 1–10% lower; E85 5–113% lower) and human toxicity potential (E10 6–7% lower; E85 72–75% lower), but worst in terms of ozone layer depletion (E10 4.5–6.8 times higher; E85 51.9–78.2 times higher), acidification (E10 30–50% higher; E85 3.3–5.5 times higher) and eutrophication potential (E10 5.2–7.0 times higher; E85 42.4–64.0 times higher) than gasoline.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Namchul Cho; Myungkwan Song; Tae Hoon Jung; Jong H. Kim; +8 Authors

    Abstract Herein, we report the dual functionality of a single n-type gallium nitride (n-GaN) layer as an electron transporter and transparent conductor, which has applications in reusable organic solar cells. After silicon doping with an optimized electron concentration, thin-film layer of GaN showed exceptional electrical properties including charge carrier mobility of 161 cm2 V−1s−1, electrical conductivity of 1.4ⅹ106 S cm−1, and sheet resistance of 11.1 Ω cm−2. Organic solar cells based on n-GaN exhibited power conversion efficiency comparable to those based on a conventional ITO/ZnO bilayered cathode. Furthermore, the n-GaN substrates exhibited reusability; due to excellent chemical stability of n-GaN, the reconstructed organic solar cells maintained their initial performance after the substrates were recycled. We suggest a new type of reusable n-GaN cathode layer featuring an integrated electron transporting layer and transparent electrode.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Dorji Yangka;
    Dorji Yangka
    ORCID
    Harvested from ORCID Public Data File

    Dorji Yangka in OpenAIRE
    Mark Diesendorf;

    Abstract The study quantifies the benefits of expanding electric cooking in the residential sector in terms of kerosene and fuel wood saved from the perspective of long term optimal energy system development of Bhutan. It also investigates the reductions in the emissions of CO2 and the indoor pollutants, SO2 and NOx due to fuel switching in the cooking enduse. This study method is based on the first ever integrated long-term energy system modeling in Bhutan, which was undertaken previously by the lead author as a master thesis work but not published. The energy system model for Bhutan was developed under the MARKAL model framework. In Bhutan electricity generation is pre-dominantly hydropower based on run-of-the-river schemes. The model results indicate that a sectoral level policy to promote electric cooking reduces the use of kerosene by 1832 kiloliters and fuelwood by 55 kilotonnes per annum which consequently leads to reductions in the emissions of CO2, SO2 and NOx by 17%, 12% and 8% respectively. The electric cooking scenario also complements the vision of Bhutan to reduce deforestation and to remain carbon neutral for all times to come.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Leslie G. Kemeny;

    Abstract In January 1981, the United States Council on Environmental Quality [U.S.C.E.Q.] released a report on “Global Energy Futures and the Carbon Dioxide Problem”. Perhaps more than any other document this report has impressed upon the scientific community the necessity to initiate a detailed and systematic study of a whole range of environmental problems created by the increasing combustion of fossil fuels. It has also helped to bring into perspective the relative risks associated with the utilisation of a number of base load fuel cycles, including, in particular, the nuclear fuel cycle.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematics and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mathematics and Computers in Simulation
    Article . 1982 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematics and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mathematics and Computers in Simulation
      Article . 1982 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David G. Carmichael; Joseph J. Ballouz; orcid Maria C. A. Balatbat;
    Maria C. A. Balatbat
    ORCID
    Harvested from ORCID Public Data File

    Maria C. A. Balatbat in OpenAIRE

    Abstract The paper puts forward a proposal that, within Clean Development Mechanism (CDM) projects, investors be allowed to benefit from options; this will require a CDM rule change. Through the presence of options, the downside risk resulting from low carbon prices and/or low achieved emission reductions on projects can be limited, while any upside resulting from high carbon prices and/or high achieved emission reductions can be taken advantage of. It is demonstrated that the presence of options improves the financial attractiveness of CDM projects, and this is at no detriment to any stakeholder. The flow-on from the proposal is that more CDM projects should be realisable if options are available, and this in turn will lead to reduced global emissions and improved sustainability. The proposal is supported by the necessary theory and is demonstrated on two registered CDM projects, one on hydropower and one on wind power.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: R. Bozovic-Stamenovic; Nirmal Kishnani; F. Faizal; orcid Deo Prasad;
    Deo Prasad
    ORCID
    Harvested from ORCID Public Data File

    Deo Prasad in OpenAIRE
    +1 Authors

    Abstract This paper addresses the issue of awareness of Green buildings, Green lifestyle and environmental matters with the aim to depict if GM (Green Mark) rating tool operates in a consumer climate that is knowledgeable. The post-occupancy evaluation of 11 office buildings in Singapore documented a range of performance indicators but also included questions concerning well-being, occupants’ expectations, awareness of GM and public expectations. This is augmented with a public survey that asked how GM and Green living are perceived. Over 2200 building occupants are surveyed in the 11 case studies, plus another 315 members of public at various locations across Singapore. Results suggest that although the awareness of Green Mark rating tool was not established well the awareness of Green lifestyle is closely connected to self-reported wellness. The implications and possible effects of raising the awareness of GM on strengthening the GM tool are discussed. Since GM buildings should visibly reflect public expectations, a revision of what GM rewards through its credit structure might be required in the future. In conclusion, the awareness of Green lifestyle is connected to positive mood regarding GM rated buildings and therefore essential for further development and fine-tuning of the GM rating tool.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kashem M. Muttaqi; Zhao Yang Dong; Rawshan Ara Begum; orcid Ali Q. Al-Shetwi;
    Ali Q. Al-Shetwi
    ORCID
    Harvested from ORCID Public Data File

    Ali Q. Al-Shetwi in OpenAIRE
    +5 Authors

    Abstract Battery energy storage system (BESS) has many purposes especially in terms of power and transport sectors (renewable energy and electric vehicles). Therefore, the global demand for batteries is projected to rise by 25% per annum. In this context, given the recent sharp increase of BESS utilization and its progressing impact on the world energy sector, evaluation of its effect on achieving sustainable development goals (SDGs) is limitedly explored and must be investigated. This is a critical research gap, as we find that BESS may influence the ability to meet all SDGs. To assess the BESS impacts, 17 SDGs were divided into three groups, including environment, society, and economy as per the three key pillars of sustainable development. In assessing the BESS impacts, an expert elicitation model is used to show how the BESS affects the positive and negative impact on the 169 targets of 17 SDGs under the environment, society and economy group. We found that the BESS positively impacts the achievement of 60 targets (35.5%) of all SDGs, but it may negatively impact the accomplishment of 22 targets (13%). With the current development and exponential growth of BESS shares along with addressing certain present limitations, these impacts may cover additional targets in the future. However, present research foci neglect significant facets. Our assessment shows that the rapid growth and evolution of BESS must be accompanied by the requisite regulatory insight and technology regulation for sustainable development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cameron Allen;
    Cameron Allen
    ORCID
    Harvested from ORCID Public Data File

    Cameron Allen in OpenAIRE
    Graciela Metternicht; orcid Thomas Wiedmann;
    Thomas Wiedmann
    ORCID
    Harvested from ORCID Public Data File

    Thomas Wiedmann in OpenAIRE

    The sustainable development goals (SDGs) provide an integrated, evidence-based framework of targets and indicators to support national planning and reporting. For countries to begin implementation of the SDGs, it is critical to build the evidence base for action. The integrated nature of the SDG targets mean that progress towards one target is also linked through complex feedbacks to other targets, placing demands on science and research to support national implementation. A range of different tools and approaches are recommended by experts, and an emerging challenge is to coherently apply and combine these different approaches to support decision-making. This study makes a significant contribution to filling this knowledge gap, adopting a novel integrated assessment approach to support the prioritisation of SDG targets through a case study for 22 countries in the Arab region. The research adopts a multi-criteria analysis decision framework which assesses and prioritises SDG targets based upon their ‘level of urgency’, ‘systemic impact’, and ‘policy gap’. A range of complementary evidence- and science-based approaches are applied within the assessment framework, including baseline assessment and benchmarking of indicators, systems and network analysis of target interlinkages, and mapping of policy alignment and gaps. The study highlights the strengths and weaknesses of each of these analytical approaches, and demonstrates how they can be rapidly combined and applied.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainability Scien...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainability Science
    Article . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    380
    citations380
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainability Scien...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainability Science
      Article . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yafei Wang; orcid Michalis Hadjikakou;
    Michalis Hadjikakou
    ORCID
    Harvested from ORCID Public Data File

    Michalis Hadjikakou in OpenAIRE
    orcid Thomas Wiedmann;
    Thomas Wiedmann
    ORCID
    Harvested from ORCID Public Data File

    Thomas Wiedmann in OpenAIRE
    Thomas Wiedmann; +1 Authors

    Cities are leading actions against climate change through global networks. More than 360 global cities announced during the 2015 Paris Climate Conference that the collective impact of their commitments will deliver over half of the world’s urban greenhouse gas emissions reductions by 2020. Previous studies on multi-city carbon footprint networks using sub-national, multi-region input-output (MRIO) modelling have identified additional opportunities for addressing the negative impacts of climate change through joint actions between cities within a country. However, similar links between city carbon footprints have not yet been studied across countries. In this study we focus on inter-city and inter-country carbon flows between two trading partners in a first attempt to address this gap. We construct a multi-scale, global MRIO model to describe a transnational city carbon footprint network among five Chinese megacities and the five largest Australian capital cities. First, we quantify city carbon footprints by sectors and regions. Based on the carbon map concept we show how local emissions reductions influence other regions’ carbon footprints. We then present a city emissions ’outsourcing hierarchy’ based on the balance of emissions embodied in intercity and international trade. The differences between cities and their position in the hierarchy emphasize the need for a bespoke treatment of their responsibilities towards climate change mitigation. Finally, we evaluate and discuss the potentially significant benefits of harmonising and aligning China’s carbon trading schemes with Australia’s cap and trade policy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    91
    citations91
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Manfred Lenzen; orcid Arunima Malik;
    Arunima Malik
    ORCID
    Harvested from ORCID Public Data File

    Arunima Malik in OpenAIRE
    Darian McBain; Joy Murray; +2 Authors

    SummaryThe use of global, multiregional input‐output (MRIO) analysis for consumption‐based (footprint) accounting has expanded significantly over the last decade. Most of the global studies on environmental and social impacts associated with consumption or embodied in international trade would have been impossible without the rapid development of extended MRIO databases. We present an overview of the developments in the field of MRIO analysis, in particular as applied to consumption‐based environmental and social footprints. We first provide a discussion of research published on various global MRIO databases and the differences between them, before focusing on the virtual laboratory computing infrastructure for potentially making MRIO databases more accessible for collaborative research, and also for supporting greater sectoral and regional detail. We discuss work that includes a broader range of extensions, in particular the inclusion of social indicators in consumption‐based accounting. We conclude by discussing the need for the development of detailed nested MRIO tables for investigating linkages between regions of different countries, and the applications of the rapidly growing field of global MRIO analysis for assessing a country's performance toward the United Nations Sustainable Development Goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph