- home
- Advanced Search
- Energy Research
- Embargo
- 6. Clean water
- Chinese Academy of Sciences
- Energy Research
- Embargo
- 6. Clean water
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Hongxun Zhang; Zhisheng Yu; Zhisheng Yu; Hongguang Guo; Ian P. Thompson;pmid: 25012785
The activity of methanogens and related bacteria which inhabit the coal beds is essential for stimulating new biogenic coal bed methane (CBM) production from the coal matrix. In this study, the microbial community structure and methanogenesis were investigated in Southern Qinshui Basin in China, and the composition and stable isotopic ratios of CBM were also determined. Although geochemical analysis suggested a mainly thermogenic origin for CBM, the microbial community structure and activities strongly implied the presence of methanogens in situ. 454 pyrosequencing analysis combined with methyl coenzyme-M reductase (mcrA) gene clone library analysis revealed that the archaeal communities in the water samples from both coal seams were similar, with the dominance of hydrogenotrophic methanogen Methanobacterium. The activity and potential of these populations to produce methane were confirmed by the observation of methane production in enrichments supplemented with H2 + CO2 and formate, and the only archaea successfully propagated in the tested water samples was from the genus Methanobacterium. 454 pyrosequencing analysis also recovered the diverse bacterial communities in the water samples, which have the potential to play a role in the coal biodegradation fueling methanogens. These results suggest that the biogenic CBM was generated by coal degradation via the hydrogenotrophic methanogens and related bacteria, which also contribute to the huge CBM reserves in Southern Qinshui Basin, China.
Oxford University Re... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-014-5908-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-014-5908-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Hongxun Zhang; Zhisheng Yu; Zhisheng Yu; Hongguang Guo; Ian P. Thompson;pmid: 25012785
The activity of methanogens and related bacteria which inhabit the coal beds is essential for stimulating new biogenic coal bed methane (CBM) production from the coal matrix. In this study, the microbial community structure and methanogenesis were investigated in Southern Qinshui Basin in China, and the composition and stable isotopic ratios of CBM were also determined. Although geochemical analysis suggested a mainly thermogenic origin for CBM, the microbial community structure and activities strongly implied the presence of methanogens in situ. 454 pyrosequencing analysis combined with methyl coenzyme-M reductase (mcrA) gene clone library analysis revealed that the archaeal communities in the water samples from both coal seams were similar, with the dominance of hydrogenotrophic methanogen Methanobacterium. The activity and potential of these populations to produce methane were confirmed by the observation of methane production in enrichments supplemented with H2 + CO2 and formate, and the only archaea successfully propagated in the tested water samples was from the genus Methanobacterium. 454 pyrosequencing analysis also recovered the diverse bacterial communities in the water samples, which have the potential to play a role in the coal biodegradation fueling methanogens. These results suggest that the biogenic CBM was generated by coal degradation via the hydrogenotrophic methanogens and related bacteria, which also contribute to the huge CBM reserves in Southern Qinshui Basin, China.
Oxford University Re... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-014-5908-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Microbiology and BiotechnologyArticle . 2014 . Peer-reviewedData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-014-5908-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu