- home
- Advanced Search
- Energy Research
- Oceanography
- Old Dominion University
- Energy Research
- Oceanography
- Old Dominion University
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:The Oceanography Society Smith, Walker O.; Sedwick, Peter N.; Arrigo, Kevin R.; Ainley, David G.; Orsi, Alejandro H.;The Ross Sea, the most productive region in the Antarctic, reaches farther south than any body of water in the world. While its food web is relatively intact, its oceanography, biogeochemistry, and sea ice coverage have been changing dramatically, and likely will continue to do so in the future. Sea ice cover and persistence have been increasing, in contrast to the Amundsen-Bellingshausen sector, which has resulted in reduced open water duration for its biota. Models predict that as the ozone hole recovers, ice cover will begin to diminish. Currents on the continental shelf will likely change in the coming century, with a projected intensification of flow leading to altered deep ocean ventilation. Such changes in ice and circulation will lead to altered plankton distributions and composition, but it is difficult at present to predict the nature of these changes. Iron and irradiance play central roles in regulating phytoplankton production in the Ross Sea, but the impacts of oceanographic changes on the biogeochemistry of iron are unclear. Unlike other Southern Ocean regions, where continental shelves are very narrow and Antarctic krill dominates the herbivorous fauna, the broad shelf of the Ross Sea is dominated by crystal krill and silverfish, which are the major prey items for higher trophic levels. At present, the Ross Sea is considered to be one of the most species-rich areas of the Southern Ocean and a biodiversity "hotspot" due to its heterogeneous habitats. Despite being among the best-studied regions in the entire Southern Ocean, accurate predictions of the impacts of climate change on the oceanography and ecology of the Ross Sea remain fraught with uncertainty.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2012.80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2012.80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:The Oceanography Society Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: A... +1 projectsNSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets for US-GLOBEC Regions ,NSF| Collaborative Research: Analysis of Continental Shelf Ecosystems: Food Web Structure and Functional Relations ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC RegionsRuzicka, James J.; Steele, John H.; Gaichas, Sarah K.; Ballerini, Tosca; Gifford, Dian J.; Brodeur, Richard D.; Hofmann, Eileen E.;handle: 1912/6589
End-to-end models were constructed to examine and compare the trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean Ecosystem Dynamics (GLOBEC) study regions: the Northern California Current, the Central Gulf of Alaska, Georges Bank, and the Southwestern Antarctic Peninsula. High-quality data collected on system components and processes over the life of the program were used as input to the models. Although the US GLOBEC program was species-centric, focused on the study of a selected set of target species of ecological or economic importance, we took a broader community-level approach to describe end-to-end energy flow, from nutrient input to fishery production. We built four end-to-end models that were structured similarly in terms of functional group composition and time scale. The models were used to identify the mid-trophic level groups that place the greatest demand on lower trophic level production while providing the greatest support to higher trophic level production. In general, euphausiids and planktivorous forage fishes were the critical energy-transfer nodes; however, some differences between ecosystems are apparent. For example, squid provide an important alternative energy pathway to forage fish, moderating the effects of changes to forage fish abundance in scenario analyses in the Central Gulf of Alaska. In the Northern California Current, large scyphozoan jellyfish are important consumers of plankton production, but can divert energy from the rest of the food web when abundant.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:The Oceanography Society Eileen Hofmann; David Bushek; Susan Ford; Ximing Guo; Dale Haidvogel; Dennis Hedgecock; John Klinck; Coren Milbury; Diego Narvaez; Eric Powell; Yongping Wang; Zhiren Wang; John Wilkin; Liusuo Zhang;Delaware Bay oyster (Crassostrea virginica) populations are influenced by two lethal parasites that cause Dermo and MSX diseases. As part of the US National Science Foundation Ecology of Infectious Diseases initiative, a program developed for Delaware Bay focuses on understanding how oyster population genetics and population dynamics interact with the environment and these parasites to structure the host populations, and how these interactions might be modified by climate change. Laboratory and field studies undertaken during this program include identifying genes related to MSX and Dermo disease resistance, potential regions for refugia and the mechanisms that allow them to exist, phenotypic and genotypic differences in oysters from putative refugia and high-disease areas, and spatial and temporal variability in the effective size of the spawning populations. Resulting data provide inputs to oyster genetics, population dynamics, and larval growth models that interface with a three-dimensional circulation model developed for Delaware Bay. Reconstruction of Lagrangian particle tracks is used to infer transport pathways of oyster larvae and MSX and Dermo disease pathogens. Results emerging from laboratory, field, and modeling studies are providing understanding of long-term changes in Delaware Bay oyster populations that occur as the oyster population responds to climate, environmental, and biological variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 United StatesPublisher:The Oceanography Society Smith, Walker O.; Sedwick, Peter N.; Arrigo, Kevin R.; Ainley, David G.; Orsi, Alejandro H.;The Ross Sea, the most productive region in the Antarctic, reaches farther south than any body of water in the world. While its food web is relatively intact, its oceanography, biogeochemistry, and sea ice coverage have been changing dramatically, and likely will continue to do so in the future. Sea ice cover and persistence have been increasing, in contrast to the Amundsen-Bellingshausen sector, which has resulted in reduced open water duration for its biota. Models predict that as the ozone hole recovers, ice cover will begin to diminish. Currents on the continental shelf will likely change in the coming century, with a projected intensification of flow leading to altered deep ocean ventilation. Such changes in ice and circulation will lead to altered plankton distributions and composition, but it is difficult at present to predict the nature of these changes. Iron and irradiance play central roles in regulating phytoplankton production in the Ross Sea, but the impacts of oceanographic changes on the biogeochemistry of iron are unclear. Unlike other Southern Ocean regions, where continental shelves are very narrow and Antarctic krill dominates the herbivorous fauna, the broad shelf of the Ross Sea is dominated by crystal krill and silverfish, which are the major prey items for higher trophic levels. At present, the Ross Sea is considered to be one of the most species-rich areas of the Southern Ocean and a biodiversity "hotspot" due to its heterogeneous habitats. Despite being among the best-studied regions in the entire Southern Ocean, accurate predictions of the impacts of climate change on the oceanography and ecology of the Ross Sea remain fraught with uncertainty.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2012.80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2012.80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:The Oceanography Society Funded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: A... +1 projectsNSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC Regions ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets for US-GLOBEC Regions ,NSF| Collaborative Research: Analysis of Continental Shelf Ecosystems: Food Web Structure and Functional Relations ,NSF| Collaborative Research: GLOBEC Pan-regional Synthesis: End-to-end Energy Budgets in US-GLOBEC RegionsRuzicka, James J.; Steele, John H.; Gaichas, Sarah K.; Ballerini, Tosca; Gifford, Dian J.; Brodeur, Richard D.; Hofmann, Eileen E.;handle: 1912/6589
End-to-end models were constructed to examine and compare the trophic structure and energy flow in coastal shelf ecosystems of four US Global Ocean Ecosystem Dynamics (GLOBEC) study regions: the Northern California Current, the Central Gulf of Alaska, Georges Bank, and the Southwestern Antarctic Peninsula. High-quality data collected on system components and processes over the life of the program were used as input to the models. Although the US GLOBEC program was species-centric, focused on the study of a selected set of target species of ecological or economic importance, we took a broader community-level approach to describe end-to-end energy flow, from nutrient input to fishery production. We built four end-to-end models that were structured similarly in terms of functional group composition and time scale. The models were used to identify the mid-trophic level groups that place the greatest demand on lower trophic level production while providing the greatest support to higher trophic level production. In general, euphausiids and planktivorous forage fishes were the critical energy-transfer nodes; however, some differences between ecosystems are apparent. For example, squid provide an important alternative energy pathway to forage fish, moderating the effects of changes to forage fish abundance in scenario analyses in the Central Gulf of Alaska. In the Northern California Current, large scyphozoan jellyfish are important consumers of plankton production, but can divert energy from the rest of the food web when abundant.
Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Old Dominion Univers... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2013Full-Text: https://digitalcommons.odu.edu/ccpo_pubs/10Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2013.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United StatesPublisher:The Oceanography Society Eileen Hofmann; David Bushek; Susan Ford; Ximing Guo; Dale Haidvogel; Dennis Hedgecock; John Klinck; Coren Milbury; Diego Narvaez; Eric Powell; Yongping Wang; Zhiren Wang; John Wilkin; Liusuo Zhang;Delaware Bay oyster (Crassostrea virginica) populations are influenced by two lethal parasites that cause Dermo and MSX diseases. As part of the US National Science Foundation Ecology of Infectious Diseases initiative, a program developed for Delaware Bay focuses on understanding how oyster population genetics and population dynamics interact with the environment and these parasites to structure the host populations, and how these interactions might be modified by climate change. Laboratory and field studies undertaken during this program include identifying genes related to MSX and Dermo disease resistance, potential regions for refugia and the mechanisms that allow them to exist, phenotypic and genotypic differences in oysters from putative refugia and high-disease areas, and spatial and temporal variability in the effective size of the spawning populations. Resulting data provide inputs to oyster genetics, population dynamics, and larval growth models that interface with a three-dimensional circulation model developed for Delaware Bay. Reconstruction of Lagrangian particle tracks is used to infer transport pathways of oyster larvae and MSX and Dermo disease pathogens. Results emerging from laboratory, field, and modeling studies are providing understanding of long-term changes in Delaware Bay oyster populations that occur as the oyster population responds to climate, environmental, and biological variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2009.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu