- home
- Advanced Search
- Energy Research
- 13. Climate action
- 11. Sustainability
- 2. Zero hunger
- English
- National Research Council
- Energy Research
- 13. Climate action
- 11. Sustainability
- 2. Zero hunger
- English
- National Research Council
description Publicationkeyboard_double_arrow_right Conference object 2021 ItalyEvelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; Stefano Luigi Gariano; Alessandro Mondini;Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyEvelina Volpe; Loredana Antronico; Francesca Ardizzone; Roberto Coscarelli; Stefano Luigi Gariano; Alessandro Mondini;Earth observation (EO) data are useful tools to analyse geomorphological processes, among which slow-moving landslides triggered by rainfall. EO data are also used to evaluate climate change and to assess its impact on geomorphological processes and geo-hydrological phenomena. The latter is the topic of the Project OT4Clima (Innovative Earth Observation technologies to study Climate Change and its impact on the environment) joined by CNR-IRPI within a consortium that includes other CNR institutes, universities and private companies. The OT4CLIMA project moves from the awareness that the impacts of climate change on the environment need to be better observed, understood, and modelled, especially at a regional scale, in order to put in place appropriate and effective risk mitigation strategies. Within the project, the CNR-IRPI group works on the development of rigorous methods and procedures for evaluating the impact of climate and its change on landslides, in particular on those characterized by a slow cinematic, at a regional scale. The test site is represented by four catchments located in the Basilicata region, southern Italy, namely the basins of the Bradano, Basento, Agri, and Sinni rivers. Long-term rainfall series gathered from 22 rain gauges located in the four catchments are analysed to evaluate the presence of temporal trends. To this aim, non-parametric and statistical tests are applied to the series. Historical landslide information is gathered from the analysis of the IFFI (Inventario dei Fenomeni Franosi in Italia) database, the Idrogeo platform (https://idrogeo.isprambiente.it/app/) and the AVI (Aree Vulnerate in Italia) catalogue. Only some types of landslide movements are considered, namely rotational-translational slides, slow slides/flows, complex movements. Moreover, Copernicus Sentinel-1 images are employed to detect the spatial and temporal distribution of slow earth surface deformations. The obtained results are used for checking the completeness of the landslide inventories. More in detail, the deformation maps of the test site are obtained by means of the application of the SBAS (Small BAseline Subset) technique to three datasets of Sentinel-1 images: t146 ascending orbit and t51 and t124 descending orbits, for the period 2015-2020. Then, a comparative analysis of rainfall data with displacement series is carried out with the aim of identifying clusters of satellite measurements with homogeneous behaviour likely correlated to variations in the rainfall regime. In particular, only the points with a mean velocity in the observation higher than 0.1 cm/year are considered to be moving. Moreover, only the displacement series of points located in areas mapped as landslides - as for the historical inventories - and sited within the influence regions of each rain gauge in the study area are analysed. A 10-km circular buffer centred in the stations are used to define the influence region of each station. The displacement series are analysed and compared to the rainfall series to search for correlations and to evaluate the effects of climate drivers on slow moving landslides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::20141464f97a9989fe6e40eb1e03f4a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2019 ItalyV. Palomba; G.E. Dino; S. Vasta; A. Frazzica; C. Micallef; R. Ghirlando;The aim of the joint activity between CNR ITAE and University of Malta, funded in the framework of a bilateral agreement is the preliminary study of the possible application of thermally-activated technologies for the refrigeration of fish on-board of fishing vessels, with particular attention to the Mediterranean area. In such a context, the two partners, given their expertise in the adsorption and absorption cooling technologies, dedicated the first year of the joint project on several activities needed to define possible integration solutions on-board. The following report is then organized as follows: - Section 3 reports an analysis of the state-of-the-art concerning existing refrigeration systems currently employed in the fishing vessels' application as well as innovative activities recently performed on the possible integration of thermally-driven technologies for the refrigeration. - Section 4 focuses on the definition of possible integration between the waste heat recovered from the engines of the fishing vessel and the sorption technology for refrigeration. This analysis takes into account different possible applications, in terms of refrigeration temperatures as well as capacities. Furthermore, different possible waste heat streams at different temperature levels are investigated. - Section 5 identifies the typical working boundary conditions under which the fishing vessel operates, in terms of cooling demand, also considering different climatic zones (i.e. different geographical areas in which the vessel operates) and vessels' typology. - Section 6 investigates possible working pairs, both for adsorption and absorption technologies, which are promising for the given boundary conditions in Section 5. This activity is needed to set the operational limits that each technology and working pair cannot overcome. - Section 7 reports the calculations performed for each working pair and operating conditions, both taking into account thermodynamic constraints as well as analysing literature results on different prototypes realized and tested. - Section 8 introduces a dynamic model, implemented in TRNSYS environment, of an absorption refrigerator, which was validated and will be used in the following activities to investigate the defined schematics in Section 4. - Section 9 defines the Key Performance Indicators (KPIs) that will be used in the following activities to compare the achievable results of the different configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b7943625da8754f078aeb01d1cb349f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b7943625da8754f078aeb01d1cb349f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2019 ItalyV. Palomba; G.E. Dino; S. Vasta; A. Frazzica; C. Micallef; R. Ghirlando;The aim of the joint activity between CNR ITAE and University of Malta, funded in the framework of a bilateral agreement is the preliminary study of the possible application of thermally-activated technologies for the refrigeration of fish on-board of fishing vessels, with particular attention to the Mediterranean area. In such a context, the two partners, given their expertise in the adsorption and absorption cooling technologies, dedicated the first year of the joint project on several activities needed to define possible integration solutions on-board. The following report is then organized as follows: - Section 3 reports an analysis of the state-of-the-art concerning existing refrigeration systems currently employed in the fishing vessels' application as well as innovative activities recently performed on the possible integration of thermally-driven technologies for the refrigeration. - Section 4 focuses on the definition of possible integration between the waste heat recovered from the engines of the fishing vessel and the sorption technology for refrigeration. This analysis takes into account different possible applications, in terms of refrigeration temperatures as well as capacities. Furthermore, different possible waste heat streams at different temperature levels are investigated. - Section 5 identifies the typical working boundary conditions under which the fishing vessel operates, in terms of cooling demand, also considering different climatic zones (i.e. different geographical areas in which the vessel operates) and vessels' typology. - Section 6 investigates possible working pairs, both for adsorption and absorption technologies, which are promising for the given boundary conditions in Section 5. This activity is needed to set the operational limits that each technology and working pair cannot overcome. - Section 7 reports the calculations performed for each working pair and operating conditions, both taking into account thermodynamic constraints as well as analysing literature results on different prototypes realized and tested. - Section 8 introduces a dynamic model, implemented in TRNSYS environment, of an absorption refrigerator, which was validated and will be used in the following activities to investigate the defined schematics in Section 4. - Section 9 defines the Key Performance Indicators (KPIs) that will be used in the following activities to compare the achievable results of the different configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b7943625da8754f078aeb01d1cb349f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b7943625da8754f078aeb01d1cb349f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2020 ItalyAuthors: Semia Cherif (Tunisia); Enrique Doblas-Miranda (Spain); Piero Lionello (Italy); Carlos Borrego (Portugal); +72 AuthorsSemia Cherif (Tunisia); Enrique Doblas-Miranda (Spain); Piero Lionello (Italy); Carlos Borrego (Portugal); Filippo Giorgi (Italy); Ana Iglesias (Spain); Sihem Jebari (Tunisia); Ezzeddine Mahmoudi (Tunisia); Marco Moriondo (Italy); Olivier Pringault (France); Gil Rilov (Israel); Samuel Somot (France); Athanassios Tsikliras (Greece); Montserrat Vilà (Spain); George Zittis (Cyprus); Giovanni Argenti (Italy); Marie-Anne Auger-Rozenberg (France); Ernesto Azzurro (Italy); Corina Basnou (Spain); Sophie Bastin (France); Mustapha Béjaoui (Tunisia); Lorenzo Brilli (Italy); Martina Carrete (Spain); Emma Cebrian (Spain); Hanene Chaabane (Tunisia); Sílvia Coelho (Portugal); Renato Colucci (Italy); Styliani Dafka (Germany); Sofia Darmaraki (Greece/Canada); Camilla Dibari (Italy); Donna Dimarchopoulou (Greece); Jean-Claude Dutay (France); Monia El Bour (Tunisia); Antonietta Elia (Spain); Elena Georgopoulou (Greece); Sylvaine Giakoumi (France); Juan Jesús González Alemán (Spain); Pablo González-Moreno (UK); Madeleine Goutx (France); Olivier Grünberger (Tunisia); Ivan Güttler (Croatia); Nathalie Hilmi (Monaco); Gabriel Jordà (Spain); Stelios Katsanevakis (Greece); Mehdi Lahlou (Morocco); Manfred A. Lange (Cyprus); Luisa Leolini (Italy); Myriam Lopes (Portugal); Annarita Mariotti (USA); Ana Isabel Miranda (Portugal); Meryem Mojtahid (France); Alexandra Monteiro (Portugal); Samuel Morin (France); Pierre Nabat (France); Anika Obermann-Hellhund (Germany); Tu?ba Öztürk (Turkey); Androniki Pardalou (Greece); Sandra Rafael (Portugal); Francesca Raffaele (Italy); Lena Reimann (Germany); Alain Roques (France); Asma Sakka Hlaili (Tunisia); Alberto Santini (Italy); Giuseppe Scarcella (Italy); Katrin Schroeder (Italy); Isla Simpson (USA); Nicolina Staglianò (Italy); Meryem Tanharte (Morocco); Rob Tanner (France); Rémi Thiéblemont (France); Yves Tramblay (France); Marco Turco (Italy); Nassos Vafeidis (Germany); Martin Wild (Switzerland); Elena Xoplaki (Germany); Argyro Zenetos (Greece);During recent decades, observations of several variables provide evidence of the ongoing anthropogenic climate change in the Mediterranean region, particularly increase of mean and extreme temperatures, and dry environmental conditions. Climate projections show that the region will among the most affected regions by climate change, specifically regarding precipitation and the hydrological cycle, but also mean warming and heat extremes (in both the terrestrial and marine environment), sea level rise and sea water acidification. Basin-wide, annual mean temperatures are now 1.5°C above the preindustrial level. In the last decades dry conditions have become more frequent and a large reduction of glaciers across high mountains of the Mediterranean has occurred at a progressively increasing pace. Mediterranean Sea waters have become warmer and saltier, Mediterranean sea level has risen at a rate (1.4 mm yr-1) similar to the global trend at centennial scale. In the future, the regional average warming will exceed the global mean value by 20% and it might reach 5.6°C at the end of the 21st century in the RCP8.5 high emission scenario. Heat waves and warm temperature extremes will intensify. Total annual precipitation is expected to decrease over most of the region (the average reduction rate is approximately 4% per each degree of global warming). However, magnitude and spatial distribution of changes are uncertain, because of differences among models. Dry conditions will be further enhanced by increasing evapotranspiration over land. At the same time, the inter-annual variability of the hydrological cycle will increase, with longer dry spells especially in the southern areas. Extreme precipitation events will become more intense over large parts of the northern Mediterranean areas. Mediterranean mean sea level is projected to be at the end of the 21st century in the range from 20 to 110 cm higher than at the end of the 20th century, depending on the level of anthropogenic emissions. Sub-regional and local relative sea level rise will be further modulated by vertical land motions and regional circulation features (with deviations in the order of 10 cm from the basin average). Therefore, though in the future milder marine storms are expected, coastal hazards, floods and erosion will increase, because of mean sea level rise. Widespread seawater warming will continue. Annual mean surface temperature will increase 2.7-3.8°C and 1.1-2.1°C in one century under the RCP8.5 and the RCP4.5 scenarios, respectively. Marine heat waves will become longer, more intense than today and their spatial extent will increase. Seawater acidification will continue, with a pH reduction that might larger than 0.4 units at the end of the 21st century
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::6dcc7c90d9f7d6b025dae5ba6730fc2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::6dcc7c90d9f7d6b025dae5ba6730fc2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2020 ItalyAuthors: Semia Cherif (Tunisia); Enrique Doblas-Miranda (Spain); Piero Lionello (Italy); Carlos Borrego (Portugal); +72 AuthorsSemia Cherif (Tunisia); Enrique Doblas-Miranda (Spain); Piero Lionello (Italy); Carlos Borrego (Portugal); Filippo Giorgi (Italy); Ana Iglesias (Spain); Sihem Jebari (Tunisia); Ezzeddine Mahmoudi (Tunisia); Marco Moriondo (Italy); Olivier Pringault (France); Gil Rilov (Israel); Samuel Somot (France); Athanassios Tsikliras (Greece); Montserrat Vilà (Spain); George Zittis (Cyprus); Giovanni Argenti (Italy); Marie-Anne Auger-Rozenberg (France); Ernesto Azzurro (Italy); Corina Basnou (Spain); Sophie Bastin (France); Mustapha Béjaoui (Tunisia); Lorenzo Brilli (Italy); Martina Carrete (Spain); Emma Cebrian (Spain); Hanene Chaabane (Tunisia); Sílvia Coelho (Portugal); Renato Colucci (Italy); Styliani Dafka (Germany); Sofia Darmaraki (Greece/Canada); Camilla Dibari (Italy); Donna Dimarchopoulou (Greece); Jean-Claude Dutay (France); Monia El Bour (Tunisia); Antonietta Elia (Spain); Elena Georgopoulou (Greece); Sylvaine Giakoumi (France); Juan Jesús González Alemán (Spain); Pablo González-Moreno (UK); Madeleine Goutx (France); Olivier Grünberger (Tunisia); Ivan Güttler (Croatia); Nathalie Hilmi (Monaco); Gabriel Jordà (Spain); Stelios Katsanevakis (Greece); Mehdi Lahlou (Morocco); Manfred A. Lange (Cyprus); Luisa Leolini (Italy); Myriam Lopes (Portugal); Annarita Mariotti (USA); Ana Isabel Miranda (Portugal); Meryem Mojtahid (France); Alexandra Monteiro (Portugal); Samuel Morin (France); Pierre Nabat (France); Anika Obermann-Hellhund (Germany); Tu?ba Öztürk (Turkey); Androniki Pardalou (Greece); Sandra Rafael (Portugal); Francesca Raffaele (Italy); Lena Reimann (Germany); Alain Roques (France); Asma Sakka Hlaili (Tunisia); Alberto Santini (Italy); Giuseppe Scarcella (Italy); Katrin Schroeder (Italy); Isla Simpson (USA); Nicolina Staglianò (Italy); Meryem Tanharte (Morocco); Rob Tanner (France); Rémi Thiéblemont (France); Yves Tramblay (France); Marco Turco (Italy); Nassos Vafeidis (Germany); Martin Wild (Switzerland); Elena Xoplaki (Germany); Argyro Zenetos (Greece);During recent decades, observations of several variables provide evidence of the ongoing anthropogenic climate change in the Mediterranean region, particularly increase of mean and extreme temperatures, and dry environmental conditions. Climate projections show that the region will among the most affected regions by climate change, specifically regarding precipitation and the hydrological cycle, but also mean warming and heat extremes (in both the terrestrial and marine environment), sea level rise and sea water acidification. Basin-wide, annual mean temperatures are now 1.5°C above the preindustrial level. In the last decades dry conditions have become more frequent and a large reduction of glaciers across high mountains of the Mediterranean has occurred at a progressively increasing pace. Mediterranean Sea waters have become warmer and saltier, Mediterranean sea level has risen at a rate (1.4 mm yr-1) similar to the global trend at centennial scale. In the future, the regional average warming will exceed the global mean value by 20% and it might reach 5.6°C at the end of the 21st century in the RCP8.5 high emission scenario. Heat waves and warm temperature extremes will intensify. Total annual precipitation is expected to decrease over most of the region (the average reduction rate is approximately 4% per each degree of global warming). However, magnitude and spatial distribution of changes are uncertain, because of differences among models. Dry conditions will be further enhanced by increasing evapotranspiration over land. At the same time, the inter-annual variability of the hydrological cycle will increase, with longer dry spells especially in the southern areas. Extreme precipitation events will become more intense over large parts of the northern Mediterranean areas. Mediterranean mean sea level is projected to be at the end of the 21st century in the range from 20 to 110 cm higher than at the end of the 20th century, depending on the level of anthropogenic emissions. Sub-regional and local relative sea level rise will be further modulated by vertical land motions and regional circulation features (with deviations in the order of 10 cm from the basin average). Therefore, though in the future milder marine storms are expected, coastal hazards, floods and erosion will increase, because of mean sea level rise. Widespread seawater warming will continue. Annual mean surface temperature will increase 2.7-3.8°C and 1.1-2.1°C in one century under the RCP8.5 and the RCP4.5 scenarios, respectively. Marine heat waves will become longer, more intense than today and their spatial extent will increase. Seawater acidification will continue, with a pH reduction that might larger than 0.4 units at the end of the 21st century
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::6dcc7c90d9f7d6b025dae5ba6730fc2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::6dcc7c90d9f7d6b025dae5ba6730fc2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:UPLanD - Journal of Urban Planning, Landscape & environmental Design Authors:Lorena Fiorini;
Lorena Fiorini
Lorena Fiorini in OpenAIRELucia Saganeiti;
Lucia Saganeiti
Lucia Saganeiti in OpenAIREhandle: 20.500.14243/535563 , 11697/198920
The new challenges posed at the European level, with the Next Generation EU, and at the national level, with the National Recovery and Resilience Plan, increase the priority of measuring spatial transformation through specific indicators. For this purpose, it is crucial to measure the effect of the transformations provided by current planning with respect to the goals of 2030 Agenda to assess their sustainability/unsustainability and, if necessary, propose improvements in the field of territorial planning. The work presented describes a research experience developed in collaboration with the Abruzzo Region, in Southern Italy, to support regional activities for the drafting of the Regional Sustainable Development Strategy (RSDS). The proposed methodology consists of a dynamic analysis through which it is possible to assess the positioning of regional planning in relation to the National Sustainable Development Strategy (NSDS) and the 17 Sustainable Development Goals (SDGs). Such position can be evaluated by carrying out a coherence analysis between the objectives of the Abruzzo Region's Plans and those of 2030 Agenda together with the selection of a set of indicators useful for monitoring the sustainability of territorial transformations expected by regional planning. In particular, the first recognition of the sustainability indicators was carried out from the ones proposed by the Italian National Institute of Statistics (ISTAT) and the Italian Institute for Environmental Protection and Research (ISPRA). UPLanD - Journal of Urban Planning, Landscape & environmental Design, Vol 6 No 1: Contemporary Urbanism
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6093/2531-9906/9358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6093/2531-9906/9358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:UPLanD - Journal of Urban Planning, Landscape & environmental Design Authors:Lorena Fiorini;
Lorena Fiorini
Lorena Fiorini in OpenAIRELucia Saganeiti;
Lucia Saganeiti
Lucia Saganeiti in OpenAIREhandle: 20.500.14243/535563 , 11697/198920
The new challenges posed at the European level, with the Next Generation EU, and at the national level, with the National Recovery and Resilience Plan, increase the priority of measuring spatial transformation through specific indicators. For this purpose, it is crucial to measure the effect of the transformations provided by current planning with respect to the goals of 2030 Agenda to assess their sustainability/unsustainability and, if necessary, propose improvements in the field of territorial planning. The work presented describes a research experience developed in collaboration with the Abruzzo Region, in Southern Italy, to support regional activities for the drafting of the Regional Sustainable Development Strategy (RSDS). The proposed methodology consists of a dynamic analysis through which it is possible to assess the positioning of regional planning in relation to the National Sustainable Development Strategy (NSDS) and the 17 Sustainable Development Goals (SDGs). Such position can be evaluated by carrying out a coherence analysis between the objectives of the Abruzzo Region's Plans and those of 2030 Agenda together with the selection of a set of indicators useful for monitoring the sustainability of territorial transformations expected by regional planning. In particular, the first recognition of the sustainability indicators was carried out from the ones proposed by the Italian National Institute of Statistics (ISTAT) and the Italian Institute for Environmental Protection and Research (ISPRA). UPLanD - Journal of Urban Planning, Landscape & environmental Design, Vol 6 No 1: Contemporary Urbanism
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6093/2531-9906/9358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6093/2531-9906/9358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2021 ItalySpano D.; Camilli F.; Rosati A.; Paris P.; Trabucco A.;On behalf of the EURAF2020 Scientific and Organizing Committees, we are very pleased to introduce the rich collection of research on agroforestry illustrated in this book of abstracts and presented within the 5° European Agroforestry Conference. Unfortunately, as we all know, the COVID-19 pandemic has forced us to meet only remotely, despite all the efforts of our local and national organizers to hold the conference in presence. We are conscious about the completely different dimension, which does not allow participants to meet, discuss and live the conference supported by an environment socially vibrant and rich of cross-cultural stimuli as the real Sardinia can offer. Nevertheless, in accordance with the mission of the European Agroforestry Federation, EURAF, to promote agroforestry knowledge, we wish to support the sharing of data presented and solicit a fruitful scientific confrontation on agroforestry issues. This book is the result of a long and rigorous work performed by the authors (about 230 abstracts sent from 5 continents and 37 countries) and members of the Scientific Committee. The book will be one of the tools supporting such confrontation we are glad to foster from the heart of the Mediterranean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::562143db6bd74193577347ad3a3a4c7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::562143db6bd74193577347ad3a3a4c7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2021 ItalySpano D.; Camilli F.; Rosati A.; Paris P.; Trabucco A.;On behalf of the EURAF2020 Scientific and Organizing Committees, we are very pleased to introduce the rich collection of research on agroforestry illustrated in this book of abstracts and presented within the 5° European Agroforestry Conference. Unfortunately, as we all know, the COVID-19 pandemic has forced us to meet only remotely, despite all the efforts of our local and national organizers to hold the conference in presence. We are conscious about the completely different dimension, which does not allow participants to meet, discuss and live the conference supported by an environment socially vibrant and rich of cross-cultural stimuli as the real Sardinia can offer. Nevertheless, in accordance with the mission of the European Agroforestry Federation, EURAF, to promote agroforestry knowledge, we wish to support the sharing of data presented and solicit a fruitful scientific confrontation on agroforestry issues. This book is the result of a long and rigorous work performed by the authors (about 230 abstracts sent from 5 continents and 37 countries) and members of the Scientific Committee. The book will be one of the tools supporting such confrontation we are glad to foster from the heart of the Mediterranean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::562143db6bd74193577347ad3a3a4c7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::562143db6bd74193577347ad3a3a4c7b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Authors: Rossi, Sergio|||0000-0003-4402-3418; Isla, Enrique; Bosch Belmar, Mar; Galli, Giovanni; +13 AuthorsRossi, Sergio|||0000-0003-4402-3418; Isla, Enrique; Bosch Belmar, Mar; Galli, Giovanni; Gori, Andrea; Gristina, Michele; Ingrosso, Gianmarco; Milisenda, Giacomo; Piraino, Stefano; Rizzo, Lucia; Schubert, Nadine|||0000-0001-7161-7882; Soares, Marcelo de Oliveira|||0000-0002-4696-3166; Solidoro, Cosimo; Thurstan, Ruth H.; Viladrich, Núria|||0000-0001-8456-4812; Willis, Trevor J.; Ziveri, Patrizia|||0000-0002-5576-0301;Climate change is already transforming the seascapes of our oceans by changing the energy availability and the metabolic rates of the organisms. Among the ecosystem-engineering species that structure the seascape, marine animal forests (MAFs) are the most widespread. These habitats, mainly composed of suspension feeding organisms, provide structural complexity to the sea floor, analogous to terrestrial forests. Because primary and secondary productivity is responding to different impacts, in particular to the rapid ongoing environmental changes driven by climate change, this paper presents some directions about what could happen to different MAFs depending on these fast changes. Climate change could modify the resistance or resilience of MAFs, potentially making them more sensitive to impacts from anthropic activities (i.e. fisheries and coastal management), and vice versa, direct impacts may amplify climate change constraints in MAFs. Such changes will have knock-on effects on the energy budgets of active and passive suspension feeding organisms, as well as on their phenology, larval nutritional condition, and population viability. How the future seascape will be shaped by the new energy fluxes is a crucial question that has to be urgently addressed to mitigate and adapt to the diverse impacts on natural systems.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=RECOLECTA___::7bc05b98f14495656105e19c8cc05d1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=RECOLECTA___::7bc05b98f14495656105e19c8cc05d1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Authors: Rossi, Sergio|||0000-0003-4402-3418; Isla, Enrique; Bosch Belmar, Mar; Galli, Giovanni; +13 AuthorsRossi, Sergio|||0000-0003-4402-3418; Isla, Enrique; Bosch Belmar, Mar; Galli, Giovanni; Gori, Andrea; Gristina, Michele; Ingrosso, Gianmarco; Milisenda, Giacomo; Piraino, Stefano; Rizzo, Lucia; Schubert, Nadine|||0000-0001-7161-7882; Soares, Marcelo de Oliveira|||0000-0002-4696-3166; Solidoro, Cosimo; Thurstan, Ruth H.; Viladrich, Núria|||0000-0001-8456-4812; Willis, Trevor J.; Ziveri, Patrizia|||0000-0002-5576-0301;Climate change is already transforming the seascapes of our oceans by changing the energy availability and the metabolic rates of the organisms. Among the ecosystem-engineering species that structure the seascape, marine animal forests (MAFs) are the most widespread. These habitats, mainly composed of suspension feeding organisms, provide structural complexity to the sea floor, analogous to terrestrial forests. Because primary and secondary productivity is responding to different impacts, in particular to the rapid ongoing environmental changes driven by climate change, this paper presents some directions about what could happen to different MAFs depending on these fast changes. Climate change could modify the resistance or resilience of MAFs, potentially making them more sensitive to impacts from anthropic activities (i.e. fisheries and coastal management), and vice versa, direct impacts may amplify climate change constraints in MAFs. Such changes will have knock-on effects on the energy budgets of active and passive suspension feeding organisms, as well as on their phenology, larval nutritional condition, and population viability. How the future seascape will be shaped by the new energy fluxes is a crucial question that has to be urgently addressed to mitigate and adapt to the diverse impacts on natural systems.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=RECOLECTA___::7bc05b98f14495656105e19c8cc05d1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=RECOLECTA___::7bc05b98f14495656105e19c8cc05d1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:OGS., Trieste , Italia Authors: Lapenna; V.;The main goal of this review is to emphasize the emerging role of the scientific community of applied geophysics in supporting actions for urban planning. We analyse the new scenario related to the global urbanization process and its impact on environmental sustainability and resilience to natural disasters of urban areas. A selected list of case-studies concerning the application of geophysical methods for the subsurface exploration in historical cities of Italy and megacities located in Asia and south America are described and discussed. The analysis clearly demonstrates that the geophysical surveys are assuming a great relevance to manage the underground urban environment and to adopt new strategies for the mitigation of geological risks. The sensor synergy strategy, the novel algorithms for the tomographic imaging and the capability to explore the subsoil with a multi-resolution approach are the key of success of the urban geophysics. Finally, the innovative aspects of the CLARA project funded by MIUR for promoting the integration of the remote and ground-based technologies for surface and subsurface imaging in urban areas are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::069377f416e1b1035b117fe3e291e7d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::069377f416e1b1035b117fe3e291e7d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:OGS., Trieste , Italia Authors: Lapenna; V.;The main goal of this review is to emphasize the emerging role of the scientific community of applied geophysics in supporting actions for urban planning. We analyse the new scenario related to the global urbanization process and its impact on environmental sustainability and resilience to natural disasters of urban areas. A selected list of case-studies concerning the application of geophysical methods for the subsurface exploration in historical cities of Italy and megacities located in Asia and south America are described and discussed. The analysis clearly demonstrates that the geophysical surveys are assuming a great relevance to manage the underground urban environment and to adopt new strategies for the mitigation of geological risks. The sensor synergy strategy, the novel algorithms for the tomographic imaging and the capability to explore the subsoil with a multi-resolution approach are the key of success of the urban geophysics. Finally, the innovative aspects of the CLARA project funded by MIUR for promoting the integration of the remote and ground-based technologies for surface and subsurface imaging in urban areas are presented and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::069377f416e1b1035b117fe3e291e7d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::069377f416e1b1035b117fe3e291e7d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2020Publisher:Svalbard Integrated Arctic Earth Observing System Funded by:RCN | Svalbard Integrated Arcti...RCN| Svalbard Integrated Arctic Earth Observing System - Knowledge Centre (SIOS-KC)Authors:Gilardoni, Stefania;
Lupi, Angelo; Mazzola, Mauro; Cappelletti David Michele; +11 AuthorsGilardoni, Stefania
Gilardoni, Stefania in OpenAIREGilardoni, Stefania;
Lupi, Angelo; Mazzola, Mauro; Cappelletti David Michele; Moroni, Beatrice; Ferrero, Luca; Markuszewski, Piotr; Rozwadowska, Anna; Krejci, Radovan; Zieger, Paul; Tunved, Peter; Karlsson, Linn; Vratolis, Stergios; Eleftheriadis, Konstantinos; Viola, Angelo;Gilardoni, Stefania
Gilardoni, Stefania in OpenAIREThis is chapter 8 of the State of Environmental Science in Svalbard (SESS) report 2019 (https://sios-svalbard.org/SESS_Issue2). Black carbon particles are emitted into the atmosphere during combustion and reside in the air for days. Once emitted, they can be transported across thousands of kilometres and reach remote locations, like the Arctic. In the polar regions, black carbon has extremely important impacts on climate and environment. Because of its dark colour, it absorbs incoming solar radiation and can warm the atmosphere. Furthermore, black carbon that settles on the white surface of snow and ice favours their melting. Black carbon has been measured for decades in Svalbard, continuously at the high-altitude Zeppelin observatory, and during the warm seasons at the low-altitude Gruvebadet observatory, both near Ny-Ålesund village. Although the data show matching seasonal oscillations, the concentrations are generally higher at Gruvebadet, suggesting an impact of local emissions and demonstrating the complexity of vertical dynamics in the atmosphere. In 2018, unlike previous years, the two sites registered very similar concentrations. In Svalbard, the long-term records of black carbon measurements are complemented by short-term observations, performed during intensive experiments, cruises along the coasts, and vertical profile measurements. Such measurements reveal a large spatial variability of local black carbon sources and the impact of ship emissions. Vertical profiles clearly show the presence of black carbon layers at high altitude (above 1 km) during spring, likely due to long-range transport of pollution from lower latitudes during conditions of Arctic haze.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4707201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4707201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2020Publisher:Svalbard Integrated Arctic Earth Observing System Funded by:RCN | Svalbard Integrated Arcti...RCN| Svalbard Integrated Arctic Earth Observing System - Knowledge Centre (SIOS-KC)Authors:Gilardoni, Stefania;
Lupi, Angelo; Mazzola, Mauro; Cappelletti David Michele; +11 AuthorsGilardoni, Stefania
Gilardoni, Stefania in OpenAIREGilardoni, Stefania;
Lupi, Angelo; Mazzola, Mauro; Cappelletti David Michele; Moroni, Beatrice; Ferrero, Luca; Markuszewski, Piotr; Rozwadowska, Anna; Krejci, Radovan; Zieger, Paul; Tunved, Peter; Karlsson, Linn; Vratolis, Stergios; Eleftheriadis, Konstantinos; Viola, Angelo;Gilardoni, Stefania
Gilardoni, Stefania in OpenAIREThis is chapter 8 of the State of Environmental Science in Svalbard (SESS) report 2019 (https://sios-svalbard.org/SESS_Issue2). Black carbon particles are emitted into the atmosphere during combustion and reside in the air for days. Once emitted, they can be transported across thousands of kilometres and reach remote locations, like the Arctic. In the polar regions, black carbon has extremely important impacts on climate and environment. Because of its dark colour, it absorbs incoming solar radiation and can warm the atmosphere. Furthermore, black carbon that settles on the white surface of snow and ice favours their melting. Black carbon has been measured for decades in Svalbard, continuously at the high-altitude Zeppelin observatory, and during the warm seasons at the low-altitude Gruvebadet observatory, both near Ny-Ålesund village. Although the data show matching seasonal oscillations, the concentrations are generally higher at Gruvebadet, suggesting an impact of local emissions and demonstrating the complexity of vertical dynamics in the atmosphere. In 2018, unlike previous years, the two sites registered very similar concentrations. In Svalbard, the long-term records of black carbon measurements are complemented by short-term observations, performed during intensive experiments, cruises along the coasts, and vertical profile measurements. Such measurements reveal a large spatial variability of local black carbon sources and the impact of ship emissions. Vertical profiles clearly show the presence of black carbon layers at high altitude (above 1 km) during spring, likely due to long-range transport of pollution from lower latitudes during conditions of Arctic haze.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4707201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4707201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2013 Italy Funded by:EC | OPTIMAEC| OPTIMAOsvaldo Facini; Nicola Di Virgilio; Federica Rossi; Marianna Nardino; Matteo Mari; Federica Zanetti; Andrea Monti;This study is the first investigation carried out in EU in a switchgrass field large enough to enable the use of high frequency continuous monitoring. The objective of this study is to describe the net ecosystem exchange of CO2 and the water use efficiency of the agro-ecosystem during the establishment phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::0962d7757647fcf8509f0f3ade410fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::0962d7757647fcf8509f0f3ade410fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2013 Italy Funded by:EC | OPTIMAEC| OPTIMAOsvaldo Facini; Nicola Di Virgilio; Federica Rossi; Marianna Nardino; Matteo Mari; Federica Zanetti; Andrea Monti;This study is the first investigation carried out in EU in a switchgrass field large enough to enable the use of high frequency continuous monitoring. The objective of this study is to describe the net ecosystem exchange of CO2 and the water use efficiency of the agro-ecosystem during the establishment phase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::0962d7757647fcf8509f0f3ade410fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::0962d7757647fcf8509f0f3ade410fb3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:American Geophysical Union, Washington, D.C. , Stati Uniti d'America Funded by:EC | PRIMAVERAEC| PRIMAVERAHannachi; A.; D. M. Straus; C. L. E. Franzke; S. Corti; T. Woollings;The extra-tropical atmosphere is characterized by robust cir- culations which have time scales longer than that associated with develop- ing baroclinic systems but shorter than a season. Such low frequency vari- ability is governed to a large extent by non-linear dynamics, and hence is chaotic. A useful aspect of this low-frequency circulation is that it can often be de- scribed by just a few quasi-stationary regime states, broadly defined as re- current or persistent large scale structures, that exert a significant impact on the probability of experiencing extreme surface weather conditions. We review a variety of techniques for identifying circulation regimes from reanalysis and numerical model output. While various techniques often yield similar regime circulation patterns, they o?er di?erent perspectives on the regimes. The regimes themselves are manifest in planetary scale patterns. They a?ect the structure of synoptic scale patterns. Extra-tropical flow regimes have been identified in simplified atmospheric models and comprehensive coupled climate models and in reanalysis data sets. It is an ongoing challenge to accurately model these regime states and high horizontal resolutions are often needed to accurately reproduce them. The regime paradigm helps to understand the response to external forcing
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d6f6838c444fff4515500a6faaf2f308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d6f6838c444fff4515500a6faaf2f308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:American Geophysical Union, Washington, D.C. , Stati Uniti d'America Funded by:EC | PRIMAVERAEC| PRIMAVERAHannachi; A.; D. M. Straus; C. L. E. Franzke; S. Corti; T. Woollings;The extra-tropical atmosphere is characterized by robust cir- culations which have time scales longer than that associated with develop- ing baroclinic systems but shorter than a season. Such low frequency vari- ability is governed to a large extent by non-linear dynamics, and hence is chaotic. A useful aspect of this low-frequency circulation is that it can often be de- scribed by just a few quasi-stationary regime states, broadly defined as re- current or persistent large scale structures, that exert a significant impact on the probability of experiencing extreme surface weather conditions. We review a variety of techniques for identifying circulation regimes from reanalysis and numerical model output. While various techniques often yield similar regime circulation patterns, they o?er di?erent perspectives on the regimes. The regimes themselves are manifest in planetary scale patterns. They a?ect the structure of synoptic scale patterns. Extra-tropical flow regimes have been identified in simplified atmospheric models and comprehensive coupled climate models and in reanalysis data sets. It is an ongoing challenge to accurately model these regime states and high horizontal resolutions are often needed to accurately reproduce them. The regime paradigm helps to understand the response to external forcing
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d6f6838c444fff4515500a6faaf2f308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d6f6838c444fff4515500a6faaf2f308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu