Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
904 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Open Access
  • Closed Access
  • Embargo
  • 15. Life on land
  • Journal of Environmental Management

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; +11 Authors

    Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramatu M. Al-Hassan; Charlemagne Babatounde Igue; Yves C. Zanmassou; Yves C. Zanmassou; +2 Authors

    Weighting scheme definition represents an important step in assessment of adaptive capacity to climate change with indicator approach since it defines the trade-offs among indicators or components and can be source of uncertainty. This study aims to assess smallholder farmers' adaptive capacity to climate change by using a mixed weighting scheme that reflect farmers' perceived importance of adaptive capacity components to inform policy makers. To achieve that objective, the sustainable livelihood framework was adopted and indicator approach was used for the assessment. The mixed weighting scheme were defined by using both equal weights and experts judgement methods during the assessment process. The mixed weighting scheme index is compared to the case where equal weights are applied in the assessment process and an uncertainty analysis was performed on relative standard deviation through a Monte Carlo simulation. Primary Data were collected from 450 farmers in two communities in northern Benin with a structured questionnaire and through focus groups discussion. The results show that smallholder farmers in both communities do not have the same perceived importance of adaptive capacity components. The index scores show that farmers have in majority low adaptive capacity. When weighted product aggregation method is used, there is more uncertainty related to the index computed with the mixed weighting scheme, but it leads to the same characterisation when compared with the index computed with the equal weights. It is recommended that mixed weighting scheme should be preferred for the assessment of adaptive capacity and weighted product aggregation method should be used.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Da Wei; Xiaodan Wang; Hui Zhao; Jianxin Zhang; +1 Authors

    The world's largest alpine pastures are found on the Tibetan Plateau, where considerable climate changes and human impacts have been experienced. Identifying their contributions to terrestrial productivity is essential if we are to adapt to, or mitigate the effects of, climate change. In this work, we begin by showing how the current warming and wetting of the climate over the last three decades has favored plant growth, as consistently captured by satellite observations and 15 models. However, the interactions between climate factors explain less of the variation in greenness observed by satellites after the 2000s, implying non-climatic influences. Next, we show that there is a significant negative impact of livestock grazing on pasture greenness, especially in peak summer. Official statistics across 72 counties verify these negative impacts, especially in poorer pastures with a higher density of grazing livestock. The variation in grazing density has a stronger negative effect on vegetation growth during the early part of the growing season after the 2000s, as compared with that before the 2000s. We found a compensatory effect of grazing and climate on alpine grassland growth, and the grazing regulates the response of vegetation greenness to climate change by modulating the dependency of vegetation growth on temperature. Thus, we suggest there is a weakening influence of climate on the greenness of alpine pastures, largely due to a strengthening influence of management, which should be considered by both the scientific community and policymakers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    57
    citations57
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alma Mendoza‐Ponce; Rogelio O. Corona‐Núñez; Luzma Fabiola Nava; Francisco Estrada; +6 Authors

    Le changement d'utilisation des terres/de couverture est la principale cause de dégradation des écosystèmes terrestres. Cependant, ses impacts seront exacerbés en raison du changement climatique et de la croissance démographique, entraînant une expansion agricole en raison de la demande accrue de denrées alimentaires et de la baisse des rendements agricoles dans certaines zones tropicales. Les stratégies internationales visant à atténuer les impacts du changement climatique et du changement du couvert terrestre sont difficiles dans les régions en développement. Cette étude vise à évaluer des alternatives pour minimiser les impacts de ces menaces dans le cadre de trajectoires socio-économiques, dans l'une des régions les plus biologiquement riches du Guatemala et du Mexique. Cette étude est située dans le bassin versant d'Usumacinta, une région transfrontalière qui partage une histoire commune, avec des propriétés biophysiques et des contraintes économiques similaires qui ont conduit à d'importants changements dans l'utilisation/la couverture des terres. Pour comprendre les impacts sur la déforestation et les émissions de carbone des différentes pratiques de gestion des terres, nous avons développé trois scénarios (1) : le statu quo (BAU), (2) un scénario de réduction des émissions visant à réduire la déforestation et la dégradation (REDD+) et (3) zéro déforestation à partir de 2030 sur la base des engagements internationaux. Nos résultats suggèrent que d'ici 2050, la couverture terrestre naturelle pourrait réduire de 22,3 et 12,2% son étendue dans les scénarios BAU et REDD +, respectivement par rapport à 2012. Cependant, le scénario zéro déforestation montre que d'ici 2050, il serait possible d'éviter de perdre 22,4 % du bassin versant boisé (1,7 million d'hectares) et d'en récupérer 5,9 % (0,4 million d'hectares). En termes de séquestration du carbone, les projets REDD + peuvent réduire les pertes de carbone dans la végétation naturelle, mais une politique de zéro déforestation peut doubler la séquestration du carbone produite par les projets REDD + uniquement. Cette étude montre que pour réduire les pressions sur les écosystèmes, en particulier dans les régions fortement marginalisées avec des migrations importantes, il est nécessaire de mettre en œuvre des politiques transfrontalières de gestion des terres qui intègrent également des stratégies de réduction de la pauvreté. El cambio en el uso/cobertura de la tierra es la principal causa de la degradación de los ecosistemas terrestres. Sin embargo, sus impactos se exacerbarán debido al cambio climático y al crecimiento de la población, impulsando la expansión agrícola debido a una mayor demanda de alimentos y menores rendimientos agrícolas en algunas áreas tropicales. Las estrategias internacionales destinadas a mitigar los impactos del cambio climático y el cambio en la cobertura del uso de la tierra son un desafío en las regiones en desarrollo. Este estudio tiene como objetivo evaluar alternativas para minimizar los impactos de estas amenazas bajo trayectorias socioeconómicas, en una de las regiones biológicamente más ricas de Guatemala y México. Este estudio se encuentra en la cuenca de Usumacinta, una región transfronteriza que comparte una historia común, con propiedades biofísicas y limitaciones económicas similares que han llevado a grandes cambios en el uso/cobertura de la tierra. Para comprender los impactos en la deforestación y las emisiones de carbono de las diferentes prácticas de gestión de la tierra, desarrollamos tres escenarios (1): negocios como siempre (BAU), (2) un escenario de reducción de emisiones destinado a reducir la deforestación y la degradación (REDD+) y (3) cero deforestación a partir de 2030 en función de los compromisos internacionales. Nuestros resultados sugieren que para 2050, la cobertura natural de la tierra podría reducir el 22.3 y el 12.2% de su extensión bajo los escenarios BAU y REDD +, respectivamente, en comparación con 2012. Sin embargo, el escenario de deforestación cero muestra que para 2050, sería posible evitar la pérdida del 22,4% de la cuenca forestal (1,7 millones de ha) y recuperar el 5,9% (0,4 millones de hectáreas) de la misma. En términos de secuestro de carbono, los proyectos REDD + pueden reducir las pérdidas de carbono en la vegetación natural, pero una política de deforestación cero puede duplicar el secuestro de carbono producido solo por los proyectos REDD +. Este estudio muestra que para reducir las presiones sobre los ecosistemas, particularmente en regiones altamente marginadas con una migración significativa, es necesario implementar políticas transfronterizas de gestión de la tierra que también integren estrategias de alivio de la pobreza. Land-use/cover change is the major cause of terrestrial ecosystem degradation. However, its impacts will be exacerbated due to climate change and population growth, driving agricultural expansion because of higher demand of food and lower agricultural yields in some tropical areas. International strategies aimed to mitigate impacts of climate change and land use-cover change are challenging in developing regions. This study aims to evaluate alternatives to minimize the impacts of these threats under socioeconomic trajectories, in one of the biologically richest regions in Guatemala and Mexico. This study is located at the Usumacinta watershed, a transboundary region that shares a common history, with similar biophysical properties and economic constraints which have led to large land use/cover changes. To understand the impacts on deforestation and carbon emissions of different land-management practices, we developed three scenarios (1): business as usual (BAU), (2) a reducing emissions scenario aimed to reduce deforestation and degradation (REDD+), and (3) zero-deforestation from 2030 onwards based on the international commitments. Our results suggest that by 2050, natural land cover might reduce 22.3 and 12.2% of its extent under the BAU and REDD + scenarios, respectively in comparison with 2012. However, the zero-deforestation scenario shows that by 2050, it would be possible to avoid losing 22.4% of the forested watershed (1.7 million ha) and recover 5.9% (0.4 million hectares) of it. In terms of carbon sequestration, REDD + projects can reduce the carbon losses in natural vegetation, but a zero-deforestation policy can double the carbon sequestration produced by REDD + projects only. This study shows that to reduce the pressures on ecosystems, particularly in regions highly marginalized with significant migration, it is necessary to implement transboundary land-management policies that also integrate poverty alleviation strategies. استخدام الأراضي/تغيير الغطاء هو السبب الرئيسي لتدهور النظام الإيكولوجي الأرضي. ومع ذلك، ستتفاقم آثاره بسبب تغير المناخ والنمو السكاني، مما يؤدي إلى التوسع الزراعي بسبب ارتفاع الطلب على الغذاء وانخفاض الغلة الزراعية في بعض المناطق الاستوائية. تشكل الاستراتيجيات الدولية الرامية إلى التخفيف من آثار تغير المناخ وتغير استخدام الأراضي تحدياً في المناطق النامية. تهدف هذه الدراسة إلى تقييم البدائل لتقليل آثار هذه التهديدات في إطار المسارات الاجتماعية والاقتصادية، في واحدة من أغنى المناطق بيولوجيًا في غواتيمالا والمكسيك. تقع هذه الدراسة في مستجمع مياه أوسوماسينتا، وهي منطقة عابرة للحدود تشترك في تاريخ مشترك، مع خصائص فيزيائية حيوية مماثلة وقيود اقتصادية أدت إلى تغييرات كبيرة في استخدام الأراضي/تغطيتها. لفهم تأثيرات ممارسات إدارة الأراضي المختلفة على إزالة الغابات وانبعاثات الكربون، وضعنا ثلاثة سيناريوهات (1): العمل كالمعتاد (BAU)، (2) سيناريو خفض الانبعاثات الذي يهدف إلى الحد من إزالة الغابات وتدهورها (REDD+)، و (3) إزالة الغابات الصفرية اعتبارًا من عام 2030 فصاعدًا بناءً على الالتزامات الدولية. تشير نتائجنا إلى أنه بحلول عام 2050، قد يقلل الغطاء الأرضي الطبيعي بنسبة 22.3 و 12.2 ٪ من مداه في إطار سيناريو العمل الاعتيادي وسيناريو خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية، على التوالي مقارنة بعام 2012. ومع ذلك، يُظهر سيناريو إزالة الغابات الصفرية أنه بحلول عام 2050، سيكون من الممكن تجنب فقدان 22.4 ٪ من مستجمعات المياه الحرجية (1.7 مليون هكتار) واستعادة 5.9 ٪ (0.4 مليون هكتار) منها. من حيث عزل الكربون، يمكن لمشاريع خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية أن تقلل من خسائر الكربون في الغطاء النباتي الطبيعي، ولكن سياسة إزالة الغابات الصفرية يمكن أن تضاعف عزل الكربون الناتج عن مشاريع خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية فقط. تُظهر هذه الدراسة أنه للحد من الضغوط على النظم الإيكولوجية، لا سيما في المناطق المهمشة للغاية مع الهجرة الكبيرة، من الضروري تنفيذ سياسات إدارة الأراضي العابرة للحدود التي تدمج أيضًا استراتيجيات التخفيف من حدة الفقر.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IIASA DAREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.60692/q7...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/v5...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IIASA DAREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.60692/q7...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/v5...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jianshuang Wu; Meng Li; Xianzhou Zhang; Sebastian Fiedler; +7 Authors

    Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    55
    citations55
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bryan, Elisabeth; Ringler, Claudia; Okoba, B.; Roncoli, C.; +2 Authors

    Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    590
    citations590
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patrícia Hipólito Leal; António Cardoso Marques;

    Globalization as a mechanism to connect people at distance and share knowledge has been flourishing. Simultaneously, environmental degradation has been increasing, as reflected in global warming. Through three dimensions, the economic, the social and political, and two measures, de jure and de facto, this study provides a disaggregated analysis of the effect of globalization on the critical issue of global warming for 25 European Union countries from 1990 to 2016. To emphasize globalization, the countries analysed were evaluated by two measures of globalization, de jure and de facto, resulting in their classification as high or low globalized countries de jure and de facto. Furthermore, energy consumption, economic growth and efficiency were included in an Autoregressive Distributed Lag model performed with the Driscoll-Kraay estimator. Robustness was checked using a Feasible Generalized Least Squares estimator. The results revealed that, overall, globalization increases environmental degradation, with the de jure measure having greater influence on high-globalized countries and the de facto measure having greater influence on low-globalized countries. Bearing in mind the increase in worldwide emissions driven by globalization, practices such as the relocation of polluting industries from high globalized countries should be discouraged. Incentives to harmonize global environmental restrictions could contribute to decarbonization worldwide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrea Hevia; Alejandra Crabiffosse; Juan Gabriel Álvarez-González; Ana Daria Ruiz-González; +1 Authors

    Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests. Data came from a network of permanent plots of young maritime pine stands in northwestern Spain. Vertical profiles of canopy bulk density were estimated for field data and simulated scenarios of pruning and thinning using individual tree biomass equations. Analyses of variance were conducted to establish the influence of each silvicultural treatment on canopy fuel variables. Results confirm the important role of both pruning and thinning in the mitigation of crown fire hazard, and that the effectiveness of the treatments is related to their intensity. Finally, models to directly estimate the vertical profile of canopy bulk density (CBD) were fitted using the Weibull probability density function and usual stand variables as regressors. The models developed include variables sensitive to pruning and thinning interventions and provide useful information to prevent extreme fire behavior through effective silviculture.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Minerva - Repositori...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Minerva - Repositori...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaomin Chen; Hongyu Liu; Jianjun Pan; Rongrong Wan; +3 Authors

    Understanding the differences in the responses of river hydrology and water quality to climate and land use changes is particularly crucial for the development and management of water resources in the future. This study was carried out to assess the isolated and coupled effects of future climate change and land use change on the flow and nutrient load of the Xitiaoxi watershed in southeast China by applying the calibrated Hydrological Simulation Program Fortran model. Four representative concentration pathways released by the Intergovernmental Panel on Climate Change and two projected land use change scenarios were used to simulate future conditions. The results indicate that climate change would result in flow increased with an average variation of 25.2% in the future, and the increased flow would be mainly concentrated on the high flow part of the total flow duration curve. Climate change would also induce seasonal shifts to nutrient load. The effects of land use change showed that nutrient load was more sensitive than flow, made Orthophosphate load increase by 2.8%-154.7%, and flow increase by 7.2%-15.1%. The results for coupled climate and land use changes indicate that flow and nutrient load would be more affected by climate change than by land use change. Climate and land use changes may amplify or weaken each other's effects on flow and nutrient load, which suggests that both should be incorporated into hydrologic models when studying the future conditions. The results of this study can help decision-makers guide management practices that aim to minimize flow and nutrient load.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fengsong Pei; Xia Li; Xiaoping Liu; Chunhua Lao; +1 Authors

    Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
904 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; +11 Authors

    Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramatu M. Al-Hassan; Charlemagne Babatounde Igue; Yves C. Zanmassou; Yves C. Zanmassou; +2 Authors

    Weighting scheme definition represents an important step in assessment of adaptive capacity to climate change with indicator approach since it defines the trade-offs among indicators or components and can be source of uncertainty. This study aims to assess smallholder farmers' adaptive capacity to climate change by using a mixed weighting scheme that reflect farmers' perceived importance of adaptive capacity components to inform policy makers. To achieve that objective, the sustainable livelihood framework was adopted and indicator approach was used for the assessment. The mixed weighting scheme were defined by using both equal weights and experts judgement methods during the assessment process. The mixed weighting scheme index is compared to the case where equal weights are applied in the assessment process and an uncertainty analysis was performed on relative standard deviation through a Monte Carlo simulation. Primary Data were collected from 450 farmers in two communities in northern Benin with a structured questionnaire and through focus groups discussion. The results show that smallholder farmers in both communities do not have the same perceived importance of adaptive capacity components. The index scores show that farmers have in majority low adaptive capacity. When weighted product aggregation method is used, there is more uncertainty related to the index computed with the mixed weighting scheme, but it leads to the same characterisation when compared with the index computed with the equal weights. It is recommended that mixed weighting scheme should be preferred for the assessment of adaptive capacity and weighted product aggregation method should be used.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Da Wei; Xiaodan Wang; Hui Zhao; Jianxin Zhang; +1 Authors

    The world's largest alpine pastures are found on the Tibetan Plateau, where considerable climate changes and human impacts have been experienced. Identifying their contributions to terrestrial productivity is essential if we are to adapt to, or mitigate the effects of, climate change. In this work, we begin by showing how the current warming and wetting of the climate over the last three decades has favored plant growth, as consistently captured by satellite observations and 15 models. However, the interactions between climate factors explain less of the variation in greenness observed by satellites after the 2000s, implying non-climatic influences. Next, we show that there is a significant negative impact of livestock grazing on pasture greenness, especially in peak summer. Official statistics across 72 counties verify these negative impacts, especially in poorer pastures with a higher density of grazing livestock. The variation in grazing density has a stronger negative effect on vegetation growth during the early part of the growing season after the 2000s, as compared with that before the 2000s. We found a compensatory effect of grazing and climate on alpine grassland growth, and the grazing regulates the response of vegetation greenness to climate change by modulating the dependency of vegetation growth on temperature. Thus, we suggest there is a weakening influence of climate on the greenness of alpine pastures, largely due to a strengthening influence of management, which should be considered by both the scientific community and policymakers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    57
    citations57
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alma Mendoza‐Ponce; Rogelio O. Corona‐Núñez; Luzma Fabiola Nava; Francisco Estrada; +6 Authors

    Le changement d'utilisation des terres/de couverture est la principale cause de dégradation des écosystèmes terrestres. Cependant, ses impacts seront exacerbés en raison du changement climatique et de la croissance démographique, entraînant une expansion agricole en raison de la demande accrue de denrées alimentaires et de la baisse des rendements agricoles dans certaines zones tropicales. Les stratégies internationales visant à atténuer les impacts du changement climatique et du changement du couvert terrestre sont difficiles dans les régions en développement. Cette étude vise à évaluer des alternatives pour minimiser les impacts de ces menaces dans le cadre de trajectoires socio-économiques, dans l'une des régions les plus biologiquement riches du Guatemala et du Mexique. Cette étude est située dans le bassin versant d'Usumacinta, une région transfrontalière qui partage une histoire commune, avec des propriétés biophysiques et des contraintes économiques similaires qui ont conduit à d'importants changements dans l'utilisation/la couverture des terres. Pour comprendre les impacts sur la déforestation et les émissions de carbone des différentes pratiques de gestion des terres, nous avons développé trois scénarios (1) : le statu quo (BAU), (2) un scénario de réduction des émissions visant à réduire la déforestation et la dégradation (REDD+) et (3) zéro déforestation à partir de 2030 sur la base des engagements internationaux. Nos résultats suggèrent que d'ici 2050, la couverture terrestre naturelle pourrait réduire de 22,3 et 12,2% son étendue dans les scénarios BAU et REDD +, respectivement par rapport à 2012. Cependant, le scénario zéro déforestation montre que d'ici 2050, il serait possible d'éviter de perdre 22,4 % du bassin versant boisé (1,7 million d'hectares) et d'en récupérer 5,9 % (0,4 million d'hectares). En termes de séquestration du carbone, les projets REDD + peuvent réduire les pertes de carbone dans la végétation naturelle, mais une politique de zéro déforestation peut doubler la séquestration du carbone produite par les projets REDD + uniquement. Cette étude montre que pour réduire les pressions sur les écosystèmes, en particulier dans les régions fortement marginalisées avec des migrations importantes, il est nécessaire de mettre en œuvre des politiques transfrontalières de gestion des terres qui intègrent également des stratégies de réduction de la pauvreté. El cambio en el uso/cobertura de la tierra es la principal causa de la degradación de los ecosistemas terrestres. Sin embargo, sus impactos se exacerbarán debido al cambio climático y al crecimiento de la población, impulsando la expansión agrícola debido a una mayor demanda de alimentos y menores rendimientos agrícolas en algunas áreas tropicales. Las estrategias internacionales destinadas a mitigar los impactos del cambio climático y el cambio en la cobertura del uso de la tierra son un desafío en las regiones en desarrollo. Este estudio tiene como objetivo evaluar alternativas para minimizar los impactos de estas amenazas bajo trayectorias socioeconómicas, en una de las regiones biológicamente más ricas de Guatemala y México. Este estudio se encuentra en la cuenca de Usumacinta, una región transfronteriza que comparte una historia común, con propiedades biofísicas y limitaciones económicas similares que han llevado a grandes cambios en el uso/cobertura de la tierra. Para comprender los impactos en la deforestación y las emisiones de carbono de las diferentes prácticas de gestión de la tierra, desarrollamos tres escenarios (1): negocios como siempre (BAU), (2) un escenario de reducción de emisiones destinado a reducir la deforestación y la degradación (REDD+) y (3) cero deforestación a partir de 2030 en función de los compromisos internacionales. Nuestros resultados sugieren que para 2050, la cobertura natural de la tierra podría reducir el 22.3 y el 12.2% de su extensión bajo los escenarios BAU y REDD +, respectivamente, en comparación con 2012. Sin embargo, el escenario de deforestación cero muestra que para 2050, sería posible evitar la pérdida del 22,4% de la cuenca forestal (1,7 millones de ha) y recuperar el 5,9% (0,4 millones de hectáreas) de la misma. En términos de secuestro de carbono, los proyectos REDD + pueden reducir las pérdidas de carbono en la vegetación natural, pero una política de deforestación cero puede duplicar el secuestro de carbono producido solo por los proyectos REDD +. Este estudio muestra que para reducir las presiones sobre los ecosistemas, particularmente en regiones altamente marginadas con una migración significativa, es necesario implementar políticas transfronterizas de gestión de la tierra que también integren estrategias de alivio de la pobreza. Land-use/cover change is the major cause of terrestrial ecosystem degradation. However, its impacts will be exacerbated due to climate change and population growth, driving agricultural expansion because of higher demand of food and lower agricultural yields in some tropical areas. International strategies aimed to mitigate impacts of climate change and land use-cover change are challenging in developing regions. This study aims to evaluate alternatives to minimize the impacts of these threats under socioeconomic trajectories, in one of the biologically richest regions in Guatemala and Mexico. This study is located at the Usumacinta watershed, a transboundary region that shares a common history, with similar biophysical properties and economic constraints which have led to large land use/cover changes. To understand the impacts on deforestation and carbon emissions of different land-management practices, we developed three scenarios (1): business as usual (BAU), (2) a reducing emissions scenario aimed to reduce deforestation and degradation (REDD+), and (3) zero-deforestation from 2030 onwards based on the international commitments. Our results suggest that by 2050, natural land cover might reduce 22.3 and 12.2% of its extent under the BAU and REDD + scenarios, respectively in comparison with 2012. However, the zero-deforestation scenario shows that by 2050, it would be possible to avoid losing 22.4% of the forested watershed (1.7 million ha) and recover 5.9% (0.4 million hectares) of it. In terms of carbon sequestration, REDD + projects can reduce the carbon losses in natural vegetation, but a zero-deforestation policy can double the carbon sequestration produced by REDD + projects only. This study shows that to reduce the pressures on ecosystems, particularly in regions highly marginalized with significant migration, it is necessary to implement transboundary land-management policies that also integrate poverty alleviation strategies. استخدام الأراضي/تغيير الغطاء هو السبب الرئيسي لتدهور النظام الإيكولوجي الأرضي. ومع ذلك، ستتفاقم آثاره بسبب تغير المناخ والنمو السكاني، مما يؤدي إلى التوسع الزراعي بسبب ارتفاع الطلب على الغذاء وانخفاض الغلة الزراعية في بعض المناطق الاستوائية. تشكل الاستراتيجيات الدولية الرامية إلى التخفيف من آثار تغير المناخ وتغير استخدام الأراضي تحدياً في المناطق النامية. تهدف هذه الدراسة إلى تقييم البدائل لتقليل آثار هذه التهديدات في إطار المسارات الاجتماعية والاقتصادية، في واحدة من أغنى المناطق بيولوجيًا في غواتيمالا والمكسيك. تقع هذه الدراسة في مستجمع مياه أوسوماسينتا، وهي منطقة عابرة للحدود تشترك في تاريخ مشترك، مع خصائص فيزيائية حيوية مماثلة وقيود اقتصادية أدت إلى تغييرات كبيرة في استخدام الأراضي/تغطيتها. لفهم تأثيرات ممارسات إدارة الأراضي المختلفة على إزالة الغابات وانبعاثات الكربون، وضعنا ثلاثة سيناريوهات (1): العمل كالمعتاد (BAU)، (2) سيناريو خفض الانبعاثات الذي يهدف إلى الحد من إزالة الغابات وتدهورها (REDD+)، و (3) إزالة الغابات الصفرية اعتبارًا من عام 2030 فصاعدًا بناءً على الالتزامات الدولية. تشير نتائجنا إلى أنه بحلول عام 2050، قد يقلل الغطاء الأرضي الطبيعي بنسبة 22.3 و 12.2 ٪ من مداه في إطار سيناريو العمل الاعتيادي وسيناريو خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية، على التوالي مقارنة بعام 2012. ومع ذلك، يُظهر سيناريو إزالة الغابات الصفرية أنه بحلول عام 2050، سيكون من الممكن تجنب فقدان 22.4 ٪ من مستجمعات المياه الحرجية (1.7 مليون هكتار) واستعادة 5.9 ٪ (0.4 مليون هكتار) منها. من حيث عزل الكربون، يمكن لمشاريع خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية أن تقلل من خسائر الكربون في الغطاء النباتي الطبيعي، ولكن سياسة إزالة الغابات الصفرية يمكن أن تضاعف عزل الكربون الناتج عن مشاريع خفض الانبعاثات الناجمة عن إزالة الغابات وتدهورها في البلدان النامية فقط. تُظهر هذه الدراسة أنه للحد من الضغوط على النظم الإيكولوجية، لا سيما في المناطق المهمشة للغاية مع الهجرة الكبيرة، من الضروري تنفيذ سياسات إدارة الأراضي العابرة للحدود التي تدمج أيضًا استراتيجيات التخفيف من حدة الفقر.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IIASA DAREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.60692/q7...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/v5...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IIASA DAREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.60692/q7...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/v5...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jianshuang Wu; Meng Li; Xianzhou Zhang; Sebastian Fiedler; +7 Authors

    Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    55
    citations55
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bryan, Elisabeth; Ringler, Claudia; Okoba, B.; Roncoli, C.; +2 Authors

    Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    590
    citations590
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patrícia Hipólito Leal; António Cardoso Marques;

    Globalization as a mechanism to connect people at distance and share knowledge has been flourishing. Simultaneously, environmental degradation has been increasing, as reflected in global warming. Through three dimensions, the economic, the social and political, and two measures, de jure and de facto, this study provides a disaggregated analysis of the effect of globalization on the critical issue of global warming for 25 European Union countries from 1990 to 2016. To emphasize globalization, the countries analysed were evaluated by two measures of globalization, de jure and de facto, resulting in their classification as high or low globalized countries de jure and de facto. Furthermore, energy consumption, economic growth and efficiency were included in an Autoregressive Distributed Lag model performed with the Driscoll-Kraay estimator. Robustness was checked using a Feasible Generalized Least Squares estimator. The results revealed that, overall, globalization increases environmental degradation, with the de jure measure having greater influence on high-globalized countries and the de facto measure having greater influence on low-globalized countries. Bearing in mind the increase in worldwide emissions driven by globalization, practices such as the relocation of polluting industries from high globalized countries should be discouraged. Incentives to harmonize global environmental restrictions could contribute to decarbonization worldwide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrea Hevia; Alejandra Crabiffosse; Juan Gabriel Álvarez-González; Ana Daria Ruiz-González; +1 Authors

    Management of fuel to minimize crown fire hazard is a key challenge in Atlantic forests, particularly for pine species. However, a better understanding of effectiveness of silvicultural treatments, especially forest pruning, for hazard reduction is required. Here we evaluate pruning and thinning as two essential silvicultural treatments for timber pine forests. Data came from a network of permanent plots of young maritime pine stands in northwestern Spain. Vertical profiles of canopy bulk density were estimated for field data and simulated scenarios of pruning and thinning using individual tree biomass equations. Analyses of variance were conducted to establish the influence of each silvicultural treatment on canopy fuel variables. Results confirm the important role of both pruning and thinning in the mitigation of crown fire hazard, and that the effectiveness of the treatments is related to their intensity. Finally, models to directly estimate the vertical profile of canopy bulk density (CBD) were fitted using the Weibull probability density function and usual stand variables as regressors. The models developed include variables sensitive to pruning and thinning interventions and provide useful information to prevent extreme fire behavior through effective silviculture.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Minerva - Repositori...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Environmental Management
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Minerva - Repositori...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Environmental Management
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaomin Chen; Hongyu Liu; Jianjun Pan; Rongrong Wan; +3 Authors

    Understanding the differences in the responses of river hydrology and water quality to climate and land use changes is particularly crucial for the development and management of water resources in the future. This study was carried out to assess the isolated and coupled effects of future climate change and land use change on the flow and nutrient load of the Xitiaoxi watershed in southeast China by applying the calibrated Hydrological Simulation Program Fortran model. Four representative concentration pathways released by the Intergovernmental Panel on Climate Change and two projected land use change scenarios were used to simulate future conditions. The results indicate that climate change would result in flow increased with an average variation of 25.2% in the future, and the increased flow would be mainly concentrated on the high flow part of the total flow duration curve. Climate change would also induce seasonal shifts to nutrient load. The effects of land use change showed that nutrient load was more sensitive than flow, made Orthophosphate load increase by 2.8%-154.7%, and flow increase by 7.2%-15.1%. The results for coupled climate and land use changes indicate that flow and nutrient load would be more affected by climate change than by land use change. Climate and land use changes may amplify or weaken each other's effects on flow and nutrient load, which suggests that both should be incorporated into hydrologic models when studying the future conditions. The results of this study can help decision-makers guide management practices that aim to minimize flow and nutrient load.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fengsong Pei; Xia Li; Xiaoping Liu; Chunhua Lao; +1 Authors

    Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.