Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
49,699 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • Open Source
  • 12. Responsible consumption

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hedberg, Per; Sundquist, Göran;

    Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a ´Youth team´, consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone´s opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership. Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a 'Youth team', consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone's opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Cities are progressively heightening their climate aspirations to curtail urban carbon emis- sions and establish a future where economies and communities can flourish within the Earth’s eco- logical limits. Consequently, numerous climate initiatives are being launched to control urban car- bon emissions, targeting various sectors, including transport, residential, agricultural, and energy. However, recent scientific literature underscores the disproportionate distribution of climate poli- cies. While cities in the Global North have witnessed several initiatives to combat climate change, cities in the Global South remain uncovered and highly vulnerable to climate hazards. To address this disparity, we employed the Balanced Iterative Reducing and Clustering using the Hierarchies (BRICH) algorithm to cluster cities from diverse geographical areas that exhibit comparable socio- economic profiles. This clustering strives to foster enhanced cooperation and collaboration among cities globally, with the goal of addressing climate change in a comprehensive manner. In summary, we identified similarities, pa􏰀erns, and clusters among peer cities, enabling mutual and generaliza- ble learning among worldwide peer-cities regarding urban climate policy exchange. This exchange occurs through three approaches: (i) inner-mutual learning, (ii) cross-mutual learning, and (iii) outer-mutual learning. Our findings mark a pivotal stride towards a􏰀aining worldwide climate ob- jectives through a shared responsibility approach. Furthermore, they provide preliminary insights into the implementation of “urban climate policy exchange” among peer cities on a global scale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    ZENODO
    Dataset . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility15
    visibilityviews15
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      ZENODO
      Dataset . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;

    Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. S. Kokh-Tatarenko; Oleg Milovanov; A. V. Mikhalev; S. N. Kuz’min; +4 Authors

    Torrefaction is considered as a method for producing biofuels with improved characteristics compared to those of the “raw” biomass (higher calorific value, moisture resistance, better grindability). The torrefaction process is an endothermic process that is usually carried out in a gaseous atmosphere in the absence of oxygen. To reduce the required heat input, it is proposed to employ the oxidative torrefaction and conduct the process in a fluidized bed agitated with flue gases containing less than 6% oxygen. Preliminary studies of the oxidative torrefaction of sunflower husks, including thermogravimetric analysis of the treated material, have shown that the heat treatment time for the biomass should be at least 5 min. A fluidized bed is a reactor with ideal mixing of the treated material where uniform treatment of raw material particles cannot generally be attained. To overcome this disadvantage of the fluidization technique and achieve the required residence time for biomass in a fluidized bed during a continuous torrefaction process, it was proposed to equip a torrefaction reactor with a series of vertical baffles spaced at 50 mm. These baffles induce a loop-like flow of the processed biomass from the inlet to the outlet of the reactor. To investigate the residence time for husk particles in the reactor, a tracer, which was colored to husk particles' color with a water-soluble dye which did not change the weight and size of the particles, was injected into the bed of uncolored particles. Tracer samples were taken every 30 s at the outlet of the reactor and were analyzed using a special procedure to determine the fraction of colored particles in each sample. This enabled us to gauge the time during which the colored particles injected into the fluidized bed reached the point of their discharge from the bed. Studies performed in a “cold” model of the reactor showed that a series of vertical baffles in the bed can provide the required residence time for biomass in a reactor including commercial reactors. Plates can provide the necessary biomass residence time in the reactor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermal Engineeringarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermal Engineeringarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; +1 Authors

    Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sung Min Park; Jun Seok Kim; Jin-Suk Lee; Soon-Chul Park; +2 Authors

    The current status and challenges associated with the production and utilization of cellulosic ethanol in Korea are reviewed in this paper. Cellulosic ethanol has emerged as a promising option for mitigating Korea's CO(2) emissions and enhancing its energy security. Korea's limited biomass resources is the most critical barrier to achieving its implementation targets for cellulosic ethanol. Efforts to identify new suitable biomass resources for cellulosic ethanol production are ongoing and intensive. Aquatic biomasses including macroalgae and plantation wastes collected in the Southeast Asia region have been found to have great potential as feedstocks for the production of cellulosic ethanol. R&D explorations into the development of technologies that can convert biomass materials to ethanol more efficiently also are underway. It is expected that cellulosic ethanol will be in supply from 2020 and that, by 2030, its use will have effectively reduced Korea's total gasoline consumption by 10%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaolong Xue; Luqi Wang; Zebin Zhao; Xiaoxia Wang;

    Abstract Transportation de-carbonization is a complex problem involving the economy, population, technology and environment. Implementing the pathway simulation based on systematic methods will help to optimize the transportation sustainability plan. This study’s key motivation is that earlier research ignored the relationship between driving factors and the transmission process. To quantitatively identify the path and process of emission reduction, a hybrid system dynamics STIRPAT-SD model is proposed to explore the transportation optimization’s de-carbonization ability. This study fully considers the composition of elements and subsystems based on the STIRPAT theoretical model and visually shows the system’s feedback relationship. Transportation structural and technical optimization scenarios are set to identify the threshold reduction paths. It is found these optimization strategies have significant de-carbonization effects. And transportation structure policy has the highest de-carbonization efficiency, the emission intensity decreased by 9.1% under the TSS2 scenario (Transportation structure scenario). This study proposes a novelty model combining dynamic simulating processes with a significantly theoretical model to improve simulation and factor composition accuracy. And the joint scenario setting identifies the most effective de-carbonization pathway and clarifies the threshold of all possible pathways. Research findings can effectively track, test, predict the achievement of policy goals, and provide policy optimization references for the sustainable development related to the transportation system in practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;

    Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Global Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Global Responsibility
    Article . 2023 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Global Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Global Responsibility
      Article . 2023 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David Chiaramonti; M. Cendagorta; N. El Bassam; H. P. Grimm;

    Abstract The proposed innovative approach identifies a new application for biomass. Bioenergy is used to drive a desalination unit which produces water for irrigating energy crops. Biomass is cultivated on artificial soil made by a mixture of local soil and organic compost from MSW (Municipal Solid Wastes). This agro-energy farm scheme aims at rescuing arid lands near to the sea. The study defines a techno-economic compromise among energy crops, biomass generator, desalination unit and irrigation system, considering an arid area (10 ha) of Tenerife as reference case study. A small experimental activity (100 m 2 ) has also been performed on site. A Sweet Sorghum cultivation, a bioenergy generator, a reverse osmosis plant and drip irrigation system have been chosen. The main result of the study is that the possibility of retaining some 14–20% surplus (in terms of biomass or energy or water) exists. The system is energetically feasible: rescued land can be doubled in approximately 4 yr. This approach is applicable to many Mediterranean coastal areas, as well as other similar situations elsewhere.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Widodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; +4 Authors

    This paper presents a multi-objective optimization model for a long-term generation mix in Indonesia. The objective of this work is to assess the economic, environment, and adequacy of local energy sources. The model includes two competing objective functions to seek the lowest cost of generation and the lowest CO2 emissions while considering technology diffusion. The scenarios include the use of fossil reserves with or without the constraints of the reserve to production ratio and exports. The results indicate that Indonesia should develop all renewable energy and requires imported coal and natural gas. If all fossil resources were upgraded to reserves, electricity demand in 2050 could be met by domestic energy sources. The maximum share of renewable energy that can be achieved in 2050 is 33% with and 80% without technology diffusion. The least cost optimization produces lower generation costs than the least CO2 emissions, as well as the combined scenario. Total CO2 emissions in 2050 are five to six times as large as current emissions. The least CO2 emissions scenario can reduce almost half of the CO2 emissions of the least cost scenario by 2050. The proposed multi-objective optimization model leads some optimal solutions for a more sustainable electricity system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
49,699 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hedberg, Per; Sundquist, Göran;

    Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a ´Youth team´, consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone´s opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership. Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a 'Youth team', consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone's opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Cities are progressively heightening their climate aspirations to curtail urban carbon emis- sions and establish a future where economies and communities can flourish within the Earth’s eco- logical limits. Consequently, numerous climate initiatives are being launched to control urban car- bon emissions, targeting various sectors, including transport, residential, agricultural, and energy. However, recent scientific literature underscores the disproportionate distribution of climate poli- cies. While cities in the Global North have witnessed several initiatives to combat climate change, cities in the Global South remain uncovered and highly vulnerable to climate hazards. To address this disparity, we employed the Balanced Iterative Reducing and Clustering using the Hierarchies (BRICH) algorithm to cluster cities from diverse geographical areas that exhibit comparable socio- economic profiles. This clustering strives to foster enhanced cooperation and collaboration among cities globally, with the goal of addressing climate change in a comprehensive manner. In summary, we identified similarities, pa􏰀erns, and clusters among peer cities, enabling mutual and generaliza- ble learning among worldwide peer-cities regarding urban climate policy exchange. This exchange occurs through three approaches: (i) inner-mutual learning, (ii) cross-mutual learning, and (iii) outer-mutual learning. Our findings mark a pivotal stride towards a􏰀aining worldwide climate ob- jectives through a shared responsibility approach. Furthermore, they provide preliminary insights into the implementation of “urban climate policy exchange” among peer cities on a global scale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    ZENODO
    Dataset . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility15
    visibilityviews15
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      ZENODO
      Dataset . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;

    Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. S. Kokh-Tatarenko; Oleg Milovanov; A. V. Mikhalev; S. N. Kuz’min; +4 Authors

    Torrefaction is considered as a method for producing biofuels with improved characteristics compared to those of the “raw” biomass (higher calorific value, moisture resistance, better grindability). The torrefaction process is an endothermic process that is usually carried out in a gaseous atmosphere in the absence of oxygen. To reduce the required heat input, it is proposed to employ the oxidative torrefaction and conduct the process in a fluidized bed agitated with flue gases containing less than 6% oxygen. Preliminary studies of the oxidative torrefaction of sunflower husks, including thermogravimetric analysis of the treated material, have shown that the heat treatment time for the biomass should be at least 5 min. A fluidized bed is a reactor with ideal mixing of the treated material where uniform treatment of raw material particles cannot generally be attained. To overcome this disadvantage of the fluidization technique and achieve the required residence time for biomass in a fluidized bed during a continuous torrefaction process, it was proposed to equip a torrefaction reactor with a series of vertical baffles spaced at 50 mm. These baffles induce a loop-like flow of the processed biomass from the inlet to the outlet of the reactor. To investigate the residence time for husk particles in the reactor, a tracer, which was colored to husk particles' color with a water-soluble dye which did not change the weight and size of the particles, was injected into the bed of uncolored particles. Tracer samples were taken every 30 s at the outlet of the reactor and were analyzed using a special procedure to determine the fraction of colored particles in each sample. This enabled us to gauge the time during which the colored particles injected into the fluidized bed reached the point of their discharge from the bed. Studies performed in a “cold” model of the reactor showed that a series of vertical baffles in the bed can provide the required residence time for biomass in a reactor including commercial reactors. Plates can provide the necessary biomass residence time in the reactor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermal Engineeringarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thermal Engineeringarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; +1 Authors

    Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sung Min Park; Jun Seok Kim; Jin-Suk Lee; Soon-Chul Park; +2 Authors

    The current status and challenges associated with the production and utilization of cellulosic ethanol in Korea are reviewed in this paper. Cellulosic ethanol has emerged as a promising option for mitigating Korea's CO(2) emissions and enhancing its energy security. Korea's limited biomass resources is the most critical barrier to achieving its implementation targets for cellulosic ethanol. Efforts to identify new suitable biomass resources for cellulosic ethanol production are ongoing and intensive. Aquatic biomasses including macroalgae and plantation wastes collected in the Southeast Asia region have been found to have great potential as feedstocks for the production of cellulosic ethanol. R&D explorations into the development of technologies that can convert biomass materials to ethanol more efficiently also are underway. It is expected that cellulosic ethanol will be in supply from 2020 and that, by 2030, its use will have effectively reduced Korea's total gasoline consumption by 10%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xiaolong Xue; Luqi Wang; Zebin Zhao; Xiaoxia Wang;

    Abstract Transportation de-carbonization is a complex problem involving the economy, population, technology and environment. Implementing the pathway simulation based on systematic methods will help to optimize the transportation sustainability plan. This study’s key motivation is that earlier research ignored the relationship between driving factors and the transmission process. To quantitatively identify the path and process of emission reduction, a hybrid system dynamics STIRPAT-SD model is proposed to explore the transportation optimization’s de-carbonization ability. This study fully considers the composition of elements and subsystems based on the STIRPAT theoretical model and visually shows the system’s feedback relationship. Transportation structural and technical optimization scenarios are set to identify the threshold reduction paths. It is found these optimization strategies have significant de-carbonization effects. And transportation structure policy has the highest de-carbonization efficiency, the emission intensity decreased by 9.1% under the TSS2 scenario (Transportation structure scenario). This study proposes a novelty model combining dynamic simulating processes with a significantly theoretical model to improve simulation and factor composition accuracy. And the joint scenario setting identifies the most effective de-carbonization pathway and clarifies the threshold of all possible pathways. Research findings can effectively track, test, predict the achievement of policy goals, and provide policy optimization references for the sustainable development related to the transportation system in practice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;

    Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Global Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Global Responsibility
    Article . 2023 . Peer-reviewed
    License: Emerald Insight Site Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Global Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Global Responsibility
      Article . 2023 . Peer-reviewed
      License: Emerald Insight Site Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David Chiaramonti; M. Cendagorta; N. El Bassam; H. P. Grimm;

    Abstract The proposed innovative approach identifies a new application for biomass. Bioenergy is used to drive a desalination unit which produces water for irrigating energy crops. Biomass is cultivated on artificial soil made by a mixture of local soil and organic compost from MSW (Municipal Solid Wastes). This agro-energy farm scheme aims at rescuing arid lands near to the sea. The study defines a techno-economic compromise among energy crops, biomass generator, desalination unit and irrigation system, considering an arid area (10 ha) of Tenerife as reference case study. A small experimental activity (100 m 2 ) has also been performed on site. A Sweet Sorghum cultivation, a bioenergy generator, a reverse osmosis plant and drip irrigation system have been chosen. The main result of the study is that the possibility of retaining some 14–20% surplus (in terms of biomass or energy or water) exists. The system is energetically feasible: rescued land can be doubled in approximately 4 yr. This approach is applicable to many Mediterranean coastal areas, as well as other similar situations elsewhere.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Widodo Wahyu Purwanto; Yoga Wienda Pratama; Yulianto Sulistyo Nugroho; null Warjito; +4 Authors

    This paper presents a multi-objective optimization model for a long-term generation mix in Indonesia. The objective of this work is to assess the economic, environment, and adequacy of local energy sources. The model includes two competing objective functions to seek the lowest cost of generation and the lowest CO2 emissions while considering technology diffusion. The scenarios include the use of fossil reserves with or without the constraints of the reserve to production ratio and exports. The results indicate that Indonesia should develop all renewable energy and requires imported coal and natural gas. If all fossil resources were upgraded to reserves, electricity demand in 2050 could be met by domestic energy sources. The maximum share of renewable energy that can be achieved in 2050 is 33% with and 80% without technology diffusion. The least cost optimization produces lower generation costs than the least CO2 emissions, as well as the combined scenario. Total CO2 emissions in 2050 are five to six times as large as current emissions. The least CO2 emissions scenario can reduce almost half of the CO2 emissions of the least cost scenario by 2050. The proposed multi-objective optimization model leads some optimal solutions for a more sustainable electricity system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.