- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- Open Source
- 12. Responsible consumption
- 6. Clean water
- Energy Research
- Closed Access
- Restricted
- Open Source
- 12. Responsible consumption
- 6. Clean water
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gary Lyons; R. David McCall; H.S. Shekhar Sharma; Ruth McCormack; Eugene Carmichael; Colin McRoberts;pmid: 23933026
Dried, milled perennial ryegrass samples were processed using chemical and physical treatments and the extracted cellulose products were analysed for yield, crystallinity by X-ray Diffraction (XRD) and for purity using Thermogravimetric Analysis (TGA), Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) and Fourier Transform Infrared (FTIR) spectroscopy. Extraction protocols examined the use of chemical chelation, acid and alkaline hydrolysis, along with physical degradation methods. Highest product yields were obtained using single step chemical protocols followed by physical processing, however, these products had low crystallinity and higher amorphous fraction content. Multistep chemical processing to completely remove hemicellulose and lignin with an alkali refluxing step, delivered lower yielding cellulose products of greater crystallinity and purity. In combination, the four instrumental techniques highlighted removal of amorphous fractions, providing rapid, accurate compositional data on the extracted cellulose products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Chaudry, S.; Bahri, P.A.; Moheimani, N.R.;Microalgae have tremendous potential for producing liquid renewable fuel. Many methods for converting microalgae to biofuel have been proposed; however, an economical and energetically feasible route for algal fuel production is yet to be found. This paper presents a review on the comparison of the most promising conversion pathways of microalgae to liquid fuel: hydrothermal liquefaction (HTL), wet extraction and non-destructive extraction. The comparison is based on important assessment parameters of product quality and yield, nutrient recovery, GHG emissions, energy and the cost associated with the production of fuel from microalgae, in order to better understand the pros and cons of each method. It was found that the HTL pathway produces more oil than the wet extraction pathway; however, higher concentrations of unwanted components are present in the HTL oil produced. Less nutrients (N and P) can be recovered in HTL compared to wet extraction. HTL consumes more fossil energy and generates higher GHG emissions than wet extraction, while the production cost of fuel from HTL pathway is lower than wet extraction pathway. There is considerable uncertainty in the comparison of the energy consumption and economics of the HTL pathway and the wet extraction pathway due to different scenarios analysed in the assessment studies. To be able to appropriately compare methodologies, the conversion methods should be analysed from growth to upgradation of oil utilising sufficiently similar assumptions and scenarios. Based on the data in available literature, wet oil extraction is the more appropriate system for biofuel production than HTL. However, the potential of alternative extraction/conversion technologies, such as, non-destructive extraction, need to be further assessed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Gary Lyons; R. David McCall; H.S. Shekhar Sharma; Ruth McCormack; Eugene Carmichael; Colin McRoberts;pmid: 23933026
Dried, milled perennial ryegrass samples were processed using chemical and physical treatments and the extracted cellulose products were analysed for yield, crystallinity by X-ray Diffraction (XRD) and for purity using Thermogravimetric Analysis (TGA), Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) and Fourier Transform Infrared (FTIR) spectroscopy. Extraction protocols examined the use of chemical chelation, acid and alkaline hydrolysis, along with physical degradation methods. Highest product yields were obtained using single step chemical protocols followed by physical processing, however, these products had low crystallinity and higher amorphous fraction content. Multistep chemical processing to completely remove hemicellulose and lignin with an alkali refluxing step, delivered lower yielding cellulose products of greater crystallinity and purity. In combination, the four instrumental techniques highlighted removal of amorphous fractions, providing rapid, accurate compositional data on the extracted cellulose products.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors: Chaudry, S.; Bahri, P.A.; Moheimani, N.R.;Microalgae have tremendous potential for producing liquid renewable fuel. Many methods for converting microalgae to biofuel have been proposed; however, an economical and energetically feasible route for algal fuel production is yet to be found. This paper presents a review on the comparison of the most promising conversion pathways of microalgae to liquid fuel: hydrothermal liquefaction (HTL), wet extraction and non-destructive extraction. The comparison is based on important assessment parameters of product quality and yield, nutrient recovery, GHG emissions, energy and the cost associated with the production of fuel from microalgae, in order to better understand the pros and cons of each method. It was found that the HTL pathway produces more oil than the wet extraction pathway; however, higher concentrations of unwanted components are present in the HTL oil produced. Less nutrients (N and P) can be recovered in HTL compared to wet extraction. HTL consumes more fossil energy and generates higher GHG emissions than wet extraction, while the production cost of fuel from HTL pathway is lower than wet extraction pathway. There is considerable uncertainty in the comparison of the energy consumption and economics of the HTL pathway and the wet extraction pathway due to different scenarios analysed in the assessment studies. To be able to appropriately compare methodologies, the conversion methods should be analysed from growth to upgradation of oil utilising sufficiently similar assumptions and scenarios. Based on the data in available literature, wet oil extraction is the more appropriate system for biofuel production than HTL. However, the potential of alternative extraction/conversion technologies, such as, non-destructive extraction, need to be further assessed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu