Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • 7. Clean energy
  • Turkish

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: OKUR, MELİH; KARABULUT, HALİT; SOLMAZ, HAMİT; ŞAHİN, FATİH;

    Free piston Stirling engines are structurally simple thermodynamic systems converting the heat into the reciprocating translational motion. In free piston Stirling engines mechanical and gas springs are used instead of the flywheels used in kinematic engines. In free piston Stirling engines one of the most important issues is keeping the amplitude of reciprocal motion of the displacer and piston under control. For the design of free piston Stirling engines, because of their structure, the dynamic and thermodynamic analyses are simultaneously conducted. The design and performance predictions of the engine is conducted via a dynamic-thermodynamic analysis including the masses of the dynamic components, constant of springs used in the system, hydrodynamic frictions, pressure forces exerting on the piston and displacer and damping forces caused by work transfer. In this study, via preparing a dynamic and thermodynamic simulation program, the analysis of a cold end connected gamma type free piston Stirling engine that will work in the temperature range of 350-700 K, have been performed. The working limits of the engine were predicted by means of examining the variation of power with the hot end temperature, spring constants of displacer and piston springs, rod diameter of the displacer, the working gas mass in the working volume of the engine and the damping constant due to the work transfer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gazi Üniversitesi - ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gazi Üniversitesi - ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: OKUR, MELİH; KARABULUT, HALİT; SOLMAZ, HAMİT; ŞAHİN, FATİH;

    Free piston Stirling engines are structurally simple thermodynamic systems converting the heat into the reciprocating translational motion. In free piston Stirling engines mechanical and gas springs are used instead of the flywheels used in kinematic engines. In free piston Stirling engines one of the most important issues is keeping the amplitude of reciprocal motion of the displacer and piston under control. For the design of free piston Stirling engines, because of their structure, the dynamic and thermodynamic analyses are simultaneously conducted. The design and performance predictions of the engine is conducted via a dynamic-thermodynamic analysis including the masses of the dynamic components, constant of springs used in the system, hydrodynamic frictions, pressure forces exerting on the piston and displacer and damping forces caused by work transfer. In this study, via preparing a dynamic and thermodynamic simulation program, the analysis of a cold end connected gamma type free piston Stirling engine that will work in the temperature range of 350-700 K, have been performed. The working limits of the engine were predicted by means of examining the variation of power with the hot end temperature, spring constants of displacer and piston springs, rod diameter of the displacer, the working gas mass in the working volume of the engine and the damping constant due to the work transfer.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gazi Üniversitesi - ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gazi Üniversitesi - ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph