- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- Apollo
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- Apollo
Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 07 Apr 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Kunnappillil Madhusudhanan, Anil; Na, Xiaoxiang; Cebon, David;doi: 10.17863/cam.66596
This is the data set associated with the journal article titled 'A Computationally Efficient Framework for Modelling Energy Consumption of ICE and Electric Vehicles'. The data files are in MATLAB file format. Figure 4 was generated using the vehicle speed profiles of an electric bus (EB) when it operated in London and of the EB's baseline simulation model, and using the state of charge (SOC) profiles of the EB when it operated in London and of the EB's baseline simulation model. Figure 5 was generated using the electricity consumption of the EB's baseline simulation model and of the EB's computationally efficient model for different drive cycles. It shows how the proposed computationally efficient model's electricity consumption compares with that of the baseline model. Figure 6 was generated using the speed profiles of a diesel heavy goods vehicle (HGV) when it operated on-road and of the HGV's baseline simulation model, and using the fuel consumption profiles of the diesel HGV when it operated on-road and of the HGV's baseline simulation model. It also contains the road elevation profile. Figure 7 was generated using the fuel consumption values of the diesel HGV's baseline simulation model and of the HGV's computationally efficient model for different drive cycles. It shows how the proposed computationally efficient model's diesel consumption compares with that of the baseline model. All the files were generated using MATLAB software package from Mathworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.66596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 73visibility views 73 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.66596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 20 Apr 2017 United KingdomPublisher:Apollo - University of Cambridge Repository De, Souza Vanessa Kay; Wales, David; Stevenson, JD; Niblett, Samuel; Farrell, JD; Goodrich, CP;doi: 10.17863/cam.8348
Frustration in the energy landscape has been quantified using a number of different metrics. These metrics have been applied to the databases in the subdirectories, which contain information about the energy landscape in the form of minima and transition states. The frustration metrics are coded within The PATHSAMPLE program, available for download at: http://www-wales.ch.cam.ac.uk/PATHSAMPLE/ Documentation can also be found at the same web address. The relevant keywords for the work described in this paper can be found at: http://www-wales.ch.cam.ac.uk/PATHSAMPLE.2.1.doc/node5.html Keywords CV, SHANNON and SHANNONR are described in the documentation. SHANNON and SHANNONR calculate frustration measures for the landscape as a function of temperature. The CV keyword gives a heat capacity calculation and hence allows an estimate of the melting temperature. Each Directory holds the database for the relevant system and input files for the PATHSAMPLE program. The output of the frustration calculation, for SHANNON, is given in Shannon.out. Some databases also contain output for the heat capacity calculation in CV.out. If required the OPTIM program is also available for download at: http://www-wales.ch.cam.ac.uk/OPTIM/ Documentation can also be found at the same web address. The program for drawing disconnectivity graphs, disconnectionDPS, can be found at: http://www-wales.ch.cam.ac.uk/software.html There is also input and output for the disconnectivity graph construction in each directory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.8348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.8348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 18 Feb 2020 United KingdomPublisher:Apollo - University of Cambridge Repository Huq, Tahmida; Lee, Lana; Eyre, Lissa; Li, Weiwei; Jagt, Robert; Kim, Chaewon; Fearn, Sarah; Deschler, Felix; Driscoll, Judith; Hoye, Robert; Pecunia, Vincenzo;doi: 10.17863/cam.48280
See the README file for a detailed description of the dataset. The data has been collected using a number of techniques. Figure 1 contains data gathered using photoelectron spectroscopy and have been saved in a .vms format. The data has been analysed and processed using CasaXPS and Origin respectively. Figure 2 contains data from photoluminescence and Transient absorbance spectroscopy and have been saved as .asc and .txt files. Figure 3 contains plots that have been gathered via X-ray diffraction and Time-of-flight Secondary Ion Mass spectroscopy techniques (ToF-SIMs). The ToF-SIMs data includes the response from all the species that evolves with ion bombardment but the species of interest are I2- and O2-. Figure 4 contains all the photovoltaic performance data in .txt format which can be opened and plotted using the Matlab script provided. The photovoltaic metrics, PCE, Jsc, VOC and FF have been generated with the Matlab script which can be taken forward for the box plot plotting as shown in Figure 4. Figure 5 is a summary of the PICTs data which has been derived from the raw data in Figure S11. Please see the ReadME files for more details.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.48280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 22 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.48280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 21 Jun 2017 United KingdomPublisher:Apollo - University of Cambridge Repository Hoye, Robert; Lee, Lana; Kurchin, RC; Huq, Tahmida; Zhang, KHL; Sponseller, M; Nienhaus, L; Brandt, RE; Jean, J; Polizzotti, JA; Kursumovic, A; Bawendi, MG; Bulovic, V; Stevanovic, V; Buonassisi, T; MacManus-Driscoll, JL;doi: 10.17863/cam.10792
Abstract for communication: "Bismuth-based compounds have recently gained increasing attention as potentially non-toxic and defect-tolerant solar absorbers. However, many of the new materials recently investigated show limited photovoltaic performance. Herein, we explore in detail one such compound through theory and experiment: bismuth oxyiodide (BiOI). We grow BiOI thin films by chemical vapor transport and find them to maintain the same tetragonal phase in ambient air for at least 197 days. Our computations suggest BiOI to be tolerant to antisite and vacancy defects. We demonstrate an all-inorganic solar cell (ITO|NiOx|BiOI|ZnO|Al) with negligible hysteresis and up to 80% external quantum efficiency under select monochromatic excitation. The short-circuit current densities and power conversion efficiencies under AM 1.5G illumination are nearly double those of previously-reported BiOI solar cells, as well as other bismuth halide and chalcohalide photovoltaics recently explored by many groups. Through a detailed loss analysis using optical characterization, photoemission spectroscopy and device modeling, we provide direction for future improvements in efficiency. Our work demonstrates that BiOI, previously considered to be a poor photocatalyst, is promising for photovoltaics."
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.10792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.10792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 19 May 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | AGR Technologies for Enab...UKRI| AGR Technologies for Enabling Molten Salt-cooled Reactor DesignsAuthors: M Margulis; Eugene Shwageraus;It has been shown that the Fluoride Salt-Cooled High-Temperature Reactors (FHR) can benefit from adopting some features of well-established Advanced Gas-cooled Reactors (AGR) technology pioneered in the United Kingdom. AGRs offer a number of technological advantages that can potentially speed up the development of FHRs, such as experience with operation at high temperatures, graphite moderated core, fuel design, on-line refuelling, and experience in manufacturing and construction of large concrete pressure vessels with steel liners. This paper summarises relevant information available in the open literature on AGR core operation and design, focusing on neutronic characteristics. The obtained information was used to test the capabilities of Monte Carlo code Serpent to reproduce fuel temperature coefficient of a typical AGR. Then, the paper presents a neutronic analysis of the impact of CO2 coolant substitution with molten salt (FLiBe). The results obtained from the analysis showed that Serpent accurately reproduces the value and behaviour of fuel temperature coefficient both for fresh and depleted fuel conditions. However, subsequent sensitivity and uncertainty analysis showed high uncertainties in the calculated fuel temperature coefficients. The change of the coolant results in significant variation of an AGR neutronic characteristics. The analysis suggests that the use of FLiBe salt as a coolant in AGR-type reactors introduces additional design challenges related to the uncertainties in nuclear data. This work summarises an initial stage of AGRESR project, which was aiming to review the AGR technology relevant to FHR development.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2020.103382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 40 Powered bymore_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2020.103382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 04 Dec 2017 Ireland, United KingdomPublisher:Royal Society of Chemistry (RSC) Publicly fundedFunded by:SFI | High-Efficiency Conjugate..., UKRI | Self-assembling Perovskit...SFI| High-Efficiency Conjugated Polymer-Inorganic Hybrids as Luminescent Solar Concentrators for Photovoltaics ,UKRI| Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)Barry McKenna; Trystan Watson; Joel Troughton; Rachel C. Evans; Rachel C. Evans;handle: 2262/82530
The ability of different polymer encapsulants to enhance the thermal stability of organolead halide perovskite films has been investigated. Epifluorescence microscopy provides crucial insight into early onset thermal degradation.
The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2017Full-Text: http://hdl.handle.net/2262/82530Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2017 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra06002e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2017Full-Text: http://hdl.handle.net/2262/82530Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2017 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra06002e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 30 Sep 2022 United KingdomPublisher:Wiley Li, Z; Huang, YT; Mohan, L; Zelewski, SJ; Friend, RH; Briscoe, J; Hoye, RLZ;handle: 10044/1/99594
Although Cs2AgBiBr6 halide elpasolites have gained substantial attention as potential nontoxic and stable alternatives to lead–halide perovskites, they are limited by their wide bandgaps >2.2 eV. Alloying with Sb into the pnictogen site has been shown to be an effective method to lower the bandgap, but this has not translated into improvements in photovoltaic (PV) performance. Herein, the underlying causes are investigated. Pinhole‐free films of Cs2Ag(SbxBi1−x)Br6 are achieved through antisolvent dripping, but PV devices still exhibit a reduction in power conversion efficiency from 0.44% ± 0.02% (without Sb) to 0.073% ± 0.007% (90% Sb; lowest bandgap). There is a 0.7 V reduction in the open‐circuit voltage, which correlates with the appearance of a sub‐bandgap state ≈0.7 eV below the optical bandgap in the Sb‐containing elpasolite films, as found in both absorbance and photoluminescence measurements. Through detailed Williamson–Hall analysis, it is found that adding Sb into the elpasolite films leads to an increase in film strain. This strain is relieved through aerosol‐assisted solvent treatment, which reduces both the sub‐bandgap state density and energetic disorder in the films, as well as reducing the fast early decay in the photogenerated carrier population due to trap filling. This work shows that Sb alloying leads to the introduction of extra sub‐bandgap states that limit the PV performance, but can be mitigated through post‐annealing treatment to reduce disorder and strain.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 19 Sep 2016 United KingdomPublisher:IOP Publishing Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620358
The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband response are thus far limited. This paper investigates the feasibility of a new integrated cantilever-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 Mar 2020 United KingdomPublisher:MDPI AG Rui Yang; Yupeng Yuan; Rushun Ying; Boyang Shen; Teng Long;Due to the pressures caused by the energy crisis, environmental pollution, and international regulations, the largest ship-producing nations are exploring renewable resources, such as wind power, solar energy, and fuel cells to save energy and develop more environmentally-friendly ships. Solar energy has recently attracted a great deal of attention from both academics and practitioners; furthermore, the optimization of energy management has become a research topic of great interest. This paper takes a solar-diesel hybrid ship with 5000 car spaces as its research object. Then, following testing on this ship, experimental data were obtained, a multi-objective optimization model related to the ship’s fuel economy and diesel generator’s efficiency was established, and a partial swarm optimization algorithm was used to solve a multi-objective problem. The results show that the optimized energy management strategy for a hybrid energy system should be tested under different electrical loads. Moreover, the hybrid system’s economy should be taken into account when the ship’s power load is high, and the output power from the new energy generation system should be increased as much as possible. Finally, the diesel generators’ efficiency should be taken into consideration when the ship’s electrical load is low, and the injection power of the new energy system should be reduced appropriately.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Embargo end date: 07 Apr 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Kunnappillil Madhusudhanan, Anil; Na, Xiaoxiang; Cebon, David;doi: 10.17863/cam.66596
This is the data set associated with the journal article titled 'A Computationally Efficient Framework for Modelling Energy Consumption of ICE and Electric Vehicles'. The data files are in MATLAB file format. Figure 4 was generated using the vehicle speed profiles of an electric bus (EB) when it operated in London and of the EB's baseline simulation model, and using the state of charge (SOC) profiles of the EB when it operated in London and of the EB's baseline simulation model. Figure 5 was generated using the electricity consumption of the EB's baseline simulation model and of the EB's computationally efficient model for different drive cycles. It shows how the proposed computationally efficient model's electricity consumption compares with that of the baseline model. Figure 6 was generated using the speed profiles of a diesel heavy goods vehicle (HGV) when it operated on-road and of the HGV's baseline simulation model, and using the fuel consumption profiles of the diesel HGV when it operated on-road and of the HGV's baseline simulation model. It also contains the road elevation profile. Figure 7 was generated using the fuel consumption values of the diesel HGV's baseline simulation model and of the HGV's computationally efficient model for different drive cycles. It shows how the proposed computationally efficient model's diesel consumption compares with that of the baseline model. All the files were generated using MATLAB software package from Mathworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.66596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 73visibility views 73 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.66596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 20 Apr 2017 United KingdomPublisher:Apollo - University of Cambridge Repository De, Souza Vanessa Kay; Wales, David; Stevenson, JD; Niblett, Samuel; Farrell, JD; Goodrich, CP;doi: 10.17863/cam.8348
Frustration in the energy landscape has been quantified using a number of different metrics. These metrics have been applied to the databases in the subdirectories, which contain information about the energy landscape in the form of minima and transition states. The frustration metrics are coded within The PATHSAMPLE program, available for download at: http://www-wales.ch.cam.ac.uk/PATHSAMPLE/ Documentation can also be found at the same web address. The relevant keywords for the work described in this paper can be found at: http://www-wales.ch.cam.ac.uk/PATHSAMPLE.2.1.doc/node5.html Keywords CV, SHANNON and SHANNONR are described in the documentation. SHANNON and SHANNONR calculate frustration measures for the landscape as a function of temperature. The CV keyword gives a heat capacity calculation and hence allows an estimate of the melting temperature. Each Directory holds the database for the relevant system and input files for the PATHSAMPLE program. The output of the frustration calculation, for SHANNON, is given in Shannon.out. Some databases also contain output for the heat capacity calculation in CV.out. If required the OPTIM program is also available for download at: http://www-wales.ch.cam.ac.uk/OPTIM/ Documentation can also be found at the same web address. The program for drawing disconnectivity graphs, disconnectionDPS, can be found at: http://www-wales.ch.cam.ac.uk/software.html There is also input and output for the disconnectivity graph construction in each directory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.8348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.8348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 18 Feb 2020 United KingdomPublisher:Apollo - University of Cambridge Repository Huq, Tahmida; Lee, Lana; Eyre, Lissa; Li, Weiwei; Jagt, Robert; Kim, Chaewon; Fearn, Sarah; Deschler, Felix; Driscoll, Judith; Hoye, Robert; Pecunia, Vincenzo;doi: 10.17863/cam.48280
See the README file for a detailed description of the dataset. The data has been collected using a number of techniques. Figure 1 contains data gathered using photoelectron spectroscopy and have been saved in a .vms format. The data has been analysed and processed using CasaXPS and Origin respectively. Figure 2 contains data from photoluminescence and Transient absorbance spectroscopy and have been saved as .asc and .txt files. Figure 3 contains plots that have been gathered via X-ray diffraction and Time-of-flight Secondary Ion Mass spectroscopy techniques (ToF-SIMs). The ToF-SIMs data includes the response from all the species that evolves with ion bombardment but the species of interest are I2- and O2-. Figure 4 contains all the photovoltaic performance data in .txt format which can be opened and plotted using the Matlab script provided. The photovoltaic metrics, PCE, Jsc, VOC and FF have been generated with the Matlab script which can be taken forward for the box plot plotting as shown in Figure 4. Figure 5 is a summary of the PICTs data which has been derived from the raw data in Figure S11. Please see the ReadME files for more details.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.48280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 22 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.48280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 21 Jun 2017 United KingdomPublisher:Apollo - University of Cambridge Repository Hoye, Robert; Lee, Lana; Kurchin, RC; Huq, Tahmida; Zhang, KHL; Sponseller, M; Nienhaus, L; Brandt, RE; Jean, J; Polizzotti, JA; Kursumovic, A; Bawendi, MG; Bulovic, V; Stevanovic, V; Buonassisi, T; MacManus-Driscoll, JL;doi: 10.17863/cam.10792
Abstract for communication: "Bismuth-based compounds have recently gained increasing attention as potentially non-toxic and defect-tolerant solar absorbers. However, many of the new materials recently investigated show limited photovoltaic performance. Herein, we explore in detail one such compound through theory and experiment: bismuth oxyiodide (BiOI). We grow BiOI thin films by chemical vapor transport and find them to maintain the same tetragonal phase in ambient air for at least 197 days. Our computations suggest BiOI to be tolerant to antisite and vacancy defects. We demonstrate an all-inorganic solar cell (ITO|NiOx|BiOI|ZnO|Al) with negligible hysteresis and up to 80% external quantum efficiency under select monochromatic excitation. The short-circuit current densities and power conversion efficiencies under AM 1.5G illumination are nearly double those of previously-reported BiOI solar cells, as well as other bismuth halide and chalcohalide photovoltaics recently explored by many groups. Through a detailed loss analysis using optical characterization, photoemission spectroscopy and device modeling, we provide direction for future improvements in efficiency. Our work demonstrates that BiOI, previously considered to be a poor photocatalyst, is promising for photovoltaics."
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.10792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.10792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 19 May 2020 United KingdomPublisher:Elsevier BV Funded by:UKRI | AGR Technologies for Enab...UKRI| AGR Technologies for Enabling Molten Salt-cooled Reactor DesignsAuthors: M Margulis; Eugene Shwageraus;It has been shown that the Fluoride Salt-Cooled High-Temperature Reactors (FHR) can benefit from adopting some features of well-established Advanced Gas-cooled Reactors (AGR) technology pioneered in the United Kingdom. AGRs offer a number of technological advantages that can potentially speed up the development of FHRs, such as experience with operation at high temperatures, graphite moderated core, fuel design, on-line refuelling, and experience in manufacturing and construction of large concrete pressure vessels with steel liners. This paper summarises relevant information available in the open literature on AGR core operation and design, focusing on neutronic characteristics. The obtained information was used to test the capabilities of Monte Carlo code Serpent to reproduce fuel temperature coefficient of a typical AGR. Then, the paper presents a neutronic analysis of the impact of CO2 coolant substitution with molten salt (FLiBe). The results obtained from the analysis showed that Serpent accurately reproduces the value and behaviour of fuel temperature coefficient both for fresh and depleted fuel conditions. However, subsequent sensitivity and uncertainty analysis showed high uncertainties in the calculated fuel temperature coefficients. The change of the coolant results in significant variation of an AGR neutronic characteristics. The analysis suggests that the use of FLiBe salt as a coolant in AGR-type reactors introduces additional design challenges related to the uncertainties in nuclear data. This work summarises an initial stage of AGRESR project, which was aiming to review the AGR technology relevant to FHR development.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2020.103382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 40 Powered bymore_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2020.103382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 04 Dec 2017 Ireland, United KingdomPublisher:Royal Society of Chemistry (RSC) Publicly fundedFunded by:SFI | High-Efficiency Conjugate..., UKRI | Self-assembling Perovskit...SFI| High-Efficiency Conjugated Polymer-Inorganic Hybrids as Luminescent Solar Concentrators for Photovoltaics ,UKRI| Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)Barry McKenna; Trystan Watson; Joel Troughton; Rachel C. Evans; Rachel C. Evans;handle: 2262/82530
The ability of different polymer encapsulants to enhance the thermal stability of organolead halide perovskite films has been investigated. Epifluorescence microscopy provides crucial insight into early onset thermal degradation.
The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2017Full-Text: http://hdl.handle.net/2262/82530Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2017 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra06002e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2017Full-Text: http://hdl.handle.net/2262/82530Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2017 . Peer-reviewedData sources: Trinity's Access to Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra06002e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 30 Sep 2022 United KingdomPublisher:Wiley Li, Z; Huang, YT; Mohan, L; Zelewski, SJ; Friend, RH; Briscoe, J; Hoye, RLZ;handle: 10044/1/99594
Although Cs2AgBiBr6 halide elpasolites have gained substantial attention as potential nontoxic and stable alternatives to lead–halide perovskites, they are limited by their wide bandgaps >2.2 eV. Alloying with Sb into the pnictogen site has been shown to be an effective method to lower the bandgap, but this has not translated into improvements in photovoltaic (PV) performance. Herein, the underlying causes are investigated. Pinhole‐free films of Cs2Ag(SbxBi1−x)Br6 are achieved through antisolvent dripping, but PV devices still exhibit a reduction in power conversion efficiency from 0.44% ± 0.02% (without Sb) to 0.073% ± 0.007% (90% Sb; lowest bandgap). There is a 0.7 V reduction in the open‐circuit voltage, which correlates with the appearance of a sub‐bandgap state ≈0.7 eV below the optical bandgap in the Sb‐containing elpasolite films, as found in both absorbance and photoluminescence measurements. Through detailed Williamson–Hall analysis, it is found that adding Sb into the elpasolite films leads to an increase in film strain. This strain is relieved through aerosol‐assisted solvent treatment, which reduces both the sub‐bandgap state density and energetic disorder in the films, as well as reducing the fast early decay in the photogenerated carrier population due to trap filling. This work shows that Sb alloying leads to the introduction of extra sub‐bandgap states that limit the PV performance, but can be mitigated through post‐annealing treatment to reduce disorder and strain.
Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Queen Mary Universit... arrow_drop_down Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202200749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 19 Sep 2016 United KingdomPublisher:IOP Publishing Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620358
The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband response are thus far limited. This paper investigates the feasibility of a new integrated cantilever-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/38863/1/Jia_2016_J._Micromech._Microeng._26_124007.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Micromechanics and MicroengineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0960-1317/26/12/124007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 14 Apr 2023 United Kingdom, GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 Mar 2020 United KingdomPublisher:MDPI AG Rui Yang; Yupeng Yuan; Rushun Ying; Boyang Shen; Teng Long;Due to the pressures caused by the energy crisis, environmental pollution, and international regulations, the largest ship-producing nations are exploring renewable resources, such as wind power, solar energy, and fuel cells to save energy and develop more environmentally-friendly ships. Solar energy has recently attracted a great deal of attention from both academics and practitioners; furthermore, the optimization of energy management has become a research topic of great interest. This paper takes a solar-diesel hybrid ship with 5000 car spaces as its research object. Then, following testing on this ship, experimental data were obtained, a multi-objective optimization model related to the ship’s fuel economy and diesel generator’s efficiency was established, and a partial swarm optimization algorithm was used to solve a multi-objective problem. The results show that the optimized energy management strategy for a hybrid energy system should be tested under different electrical loads. Moreover, the hybrid system’s economy should be taken into account when the ship’s power load is high, and the output power from the new energy generation system should be increased as much as possible. Finally, the diesel generators’ efficiency should be taken into consideration when the ship’s electrical load is low, and the injection power of the new energy system should be reduced appropriately.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu