- home
- Advanced Search
- Energy Research
- Embargo
- 12. Responsible consumption
- Bioresource Technology
- Energy Research
- Embargo
- 12. Responsible consumption
- Bioresource Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, NetherlandsPublisher:Elsevier BV Funded by:NWO | Biorefineries for China a...NWO| Biorefineries for China and Europe ? The Road to SustainabilityPosada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.;pmid: 23069604
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, NetherlandsPublisher:Elsevier BV Funded by:NWO | Biorefineries for China a...NWO| Biorefineries for China and Europe ? The Road to SustainabilityPosada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.;pmid: 23069604
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu