Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
48 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • Embargo
  • 2. Zero hunger
  • 6. Clean water
  • English

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gebregziabher, Zenebe;

    The study on Rural Energy and Household Forest Values under Varying Management Regimes was conducted in Ethiopia. The general objective of this survey is to study household behavior regarding sustainable land use. Households were selected from the main four regions of Ethiopia (Amhara, Oromia, SNNP, and Tigray) in 2009. The data was generated by researchers at the Ethiopian Development Research Institute and Gothenburg University. The general objective of this survey is to study household behavior regarding communally managed forest resources. The datasets submitted here consist of different data files in Stata format. Each file corresponds to a section in the questionnaire. The study on Rural Energy and Household Forest Values under Varying Management Regimes was conducted in Ethiopia. The general objective of this survey is to study household behavior regarding sustainable land use. Households were selected from the main four regions of Ethiopia (Amhara, Oromia, SNNP, and Tigray) in 2009. The data was generated by researchers at the Ethiopian Development Research Institute and Gothenburg University. The general objective of this survey is to study household behavior regarding communally managed forest resources. The datasets consist of different data files in Stata format. Each file corresponds to a section in the questionnaire.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 2020
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 2020
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Piccitto A.; Corinzia S.A.; Scordia D.; Calcagno S.; +4 Authors

    Giant reed (Arundo Donax L.) is a perennial, non-food and low-input energy crop representing a promising solution to produce renewable energy at low cost, especially in marginal areas - i.e. low profitable areas which are prone to land abandonment. This research investigates the effect of two levels of irrigation (100% ETm and rainfed) on a 20-year old plantation of 40 genotypes of giant reed (Arundo donax L.) collected around Southern Italy. The experimental methanogenic potential of the biomass was defined trough the BMP test (Biochemical Methane Potential). The trial shows that several genotypes maintain high biomass yield and thus high biomethane potential yield even from old plantations. The variability of biomass yield and biomethane potential yield among genotypes is high. Giant reed genotypes show a positive response to the irrigation, which represent the main limiting factor in Mediterranean environments. Proceedings of the 28th European Biomass Conference and Exhibition, 6-9 July 2020, Virtual, pp. 234-237

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2020
    Data sources: CNR ExploRA
    https://dx.doi.org/10.5071/28t...
    Conference object . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2020
      Data sources: CNR ExploRA
      https://dx.doi.org/10.5071/28t...
      Conference object . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Anna Maria De Girolamo; Antonio Lo Porto; Rosalie Vandromme; Olivier Cerdan;

    The three different future scenarios showed an increase in mean temperature for all months between 0.5-2.4°C and a reduction in precipitation (by 4-7%) for the period 2030-2059 (MPI, KNMI, SMHI). The results of the present work show that climate change will bring a reduction of water resource availability and some alterations in the hydrological regime. The SWAT model, which proved to be a valuable operational tool for evaluating the potential impact of climate change on water resources, estimates a reduction of total water yield and a shift of the flow regime towards drier conditions, although the river type classification will probably remain essentially unvaried. A sever reduction of snowfall in the mountainous part of the basin was also estimated that is expected to impact the flow regime. However, it is important to take into account that several sources of uncertainties, which depend both on the used hydrological models and on the climate change scenarios, affect the predictions of the hydrological response of a river basin under climate change. In addition, some of the assumptions made (i.e. that land use does not change in the future) could be incorrect as climate change could also result in a significant alteration of land cover. Hence, we have to consider projections not as a predictive method, but as a tool that may be used to assess changes in process dynamics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Report . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Report . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schafer Gerhard; Diakoparaskevas Paraskevas; Varouchakis Emmanouel; Anyfanti Ioanna; +1 Authors

    The primary focus of this task is the prediction of the effect of some stakeholder proposed prevention and mitigation measures as well as the impact of climate change scenarios on coastal aquifers regarding the groundwater flow and fate and the transport of contaminants. To be operational and practical, the calibrated numerical simulator FEFLOW was used to model the flow and solute transport in the four coastal aquifers under study. The modelling approach was based on a spatial discretization of the physical domain of the aquifer in three dimensions. Depending on the type of aquifer being modelled, the observed temporal variation in groundwater flow, the risk of saltwater intrusion, and the availability of flow and transport parameters and data, the appropriate modelling approach was selected. The outcome of the modelling task is integrated in the establishment and application of sustainable governance approaches for the four coastal aquifers. As the numerical modelling approach is an essential part of the multi-criteria Decision Support System (DSS), our modelling approach included climate change scenarios to model the impact of future rainfall data on predicted ground water levels, which may significantly impact both the available groundwater reserves and groundwater quality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Report . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Report . 2023
    Data sources: Datacite
    ZENODO
    Report . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Report . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Report . 2023
      Data sources: Datacite
      ZENODO
      Report . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Brunetti A.; Drioli E.; Lee Y.M.; Barbieri G;

    The possible application of membranes for CO2 separation in the treatment of non-valuable streams (e.g., flue gas of a power plant or cement industry) or valuable streams (e.g.,biogas) has been analyzed. Some selection criteria useful in the choice of membrane gas separation for CO2 capture are discussed to evaluate the advantages potentially offered by membrane systems. Membrane selectivity ranging from 30-50 (values of commercial membranes) to 100-500 (values of most promising laboratory membranes) and different feed/permeate pressure ratios were considered for the various cases. The composition and recovery of carbon dioxide in the membrane-treated stream were the target parameters taken into account as guidelines in the evaluation of the separation technology performance. General "maps" of CO2 permeate concentration versus CO2 recovery have been developed by means of a simple tool that takes into account the influence of the most importantp arameters affecting the membrane system performance (that is,membrane selectivity and permeation driving force).The analyses indicated that the separation depends on various interrelated factors: the membrane material (selectivity and flux), the operating conditions (pressure ratio), and the final requirements (CO2 recovery and composition).Also, the operational limit and the potentialities of the membrane gas separation technology were analyzed under these conditions.The "maps" proposed and utilized for CO2 separation are valid and can beutilized for other gas separations in which the membrane shows selectivities similar to those taken into account here.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gary Free1; Claudia Giardino1; Mariano Bresciani1; Monica Pinardi1; +2 Authors

    Lakes are integrators of environmental and climatic changes occurring within their contributing basins. Understanding the complex behavior of lakes in a changing environment is essential to effective water resource management and mitigation of climate change. The ESA CCI Lakes is a multi-disciplinary project (https://climate.esa.int/en/projects/lakes/) creating the largest and longest consistent global record of five lake climate variables: lake water level, extent, temperature, surface-leaving reflectance, and ice cover. Phase 1 covered 250 lakes and phase 2 will cover up to 2000 globally. The distribution of the global dataset will be presented followed by a focus on Lake Trasimeno, a shallow eutrophic lake in central Italy included in the Long-Term Ecosystem Research (LTER) network. We used AI and Non-Parametric Multiplicative Regression (NPMR) to analyze the data. Chlorophyll-a in lake Trasimeno was dominated by a summer bloom initiating in July and peaking in early September and was largely predicted by the time variable - accounting for 87% of feature importance. The North Atlantic Oscillation was the next most important variable (4% feature importance) corroborated by NPand shown to be largely important during early to mid-September when a positive NAO, associated with high pressure and warm sunny weather, led to an increase in chlorophyll-a concentrations. Regional climatic indices as well as the more obvious nutrient drivers of algal blooms should therefore be considered in lake management. High Frequency chlorophyll-a and phycocyanin data from a WISPstation showed that rapid fluctuations visible in the satellite record are supported by in situ data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lopes, Sofia Oliveira; Fontes, Fernando A. C. C.; Pereira, Rui M. S.; Machado, Gaspar J.;

    In this article, we present a simple mathematical model that will help us to optimize the control of irrigation in field of potatoes in the Lisbon area. It is well known that the Iberian Peninsula is going to be one of the most affected by climate change (lack of water will increase and prolonged periods of drought as can be read in the last Assessment Report by IPPCC), and therefore, irrigation needs to be intelligent in such a way that water is saved. The model presented is simple and still far from reality. It was implemented in MatLab and the results look promising. The lack of data, however was a problem. Still, the model can improve greatly, once we implement a project we have, that will use a real field with instruments that will give us readings in site and on line. This research was financed by FEDER Funds through Programa Operacional Factores de Competitividade - COMPETE and by Portuguese Funds through FCT - Fundação para a Ciência e a Tecnologia, within the Project PEst-C/MAT/UI0013/2011.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gianico A.; Gallipoli A.; Braguglia C.M.; Mininni G.;

    The application of ultrasound to sludge is an efficient method for sludge disintegration in order to accelerate the anaerobic digestion process, but energy balance on the basis of lab tests is disadvantaged due to the inefficiency at this scale. In this paper the energy balance is discussed for five full scale WWTPs equipped with different devices with the aim to investigate the cost-effectiveness of the ultrasonic pre-treatment before digestion. These five experiences show positive energy gains operating at 20 kHz: best performances are attained at short sonication time and high sonication power. Moreover, sludge sonication at 200 kHz is presented as an alternative pretreatment to improve the anaerobic digestibility and to remove potentially organic micropollutants. Lab experiment results of this treatment indicated quite good disintegration effect, in terms of substrate solubilization, with consequent acceleration of the hydrolysis phase and increase of biogas production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Braconnier, Serge; Gutjhard, Sylvain; Trouche, Gilles; Reddy, Bellum; +14 Authors

    Geopolitical tensions in some oil producing regions and the uncertainties surrounding the future availability of fossil fuels, as well as the urgent necessity to mitigate negative impacts on climate through reduced CO2 emissions, have created a strong interest for biofuels. Among potential crops for the production of biofuels, sorghum is an interesting C4 plant, able to combine production of food and fuel as well as a variety of other products. However, new ideotypes of sorghum need to be defined in order to optimise efficiency with respect to the following three potential use options of sorghum: (1) production of ethanol through second generation processes, (2) production of first generation ethanol combined with the use of bagasse for co-generation, and (3) production of first generation ethanol combined with the production of grain and the use of bagasse as fodder. This paper presents results elaborated in the framework of the project SWEETFUEL, supported by the European Commission, on the successful combination of traits of new sorghum ideotypes suitable for the three abovementioned use options. Proceedings of the 19th European Biomass Conference and Exhibition, 6-10 June 2011, Berlin, Germany, pp. 782-786

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2011
    Data sources: Agritrop
    https://dx.doi.org/10.5071/19t...
    Conference object . 2011
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2011
      Data sources: Agritrop
      https://dx.doi.org/10.5071/19t...
      Conference object . 2011
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Li, Chaojie;

    Lakes are a fundamental feature of nature with brilliance, profoundness and complexity. Various of physical, chemical and biological changes take place three dimensionally in deep lakes, regulated by complicated boundary conditions. To understand and predict such aquatic systems is not an easy task, but scientists have endeavored to accomplish it by field measurements and numerical simulations, focusing on hydrodynamics, water quality and ecology. Although important to the aquatic system and human health, pathogen dynamics in lakes has not been addressed with priority in most studies about lakes, with even less attention for pathogenic virus in general, or specific virus genera or strains. In this study, we propose a coupled 3D hydrodynamic and particle tracking model, to study the fate and transport of the Enterovirus genus with twelve specific strains, followed by a Quantitative Microbial Risk Assessment model to estimate the risk of infection and illness for humans when interacting with lake water in many forms. Lake Geneva is chosen as the study site, as it is the biggest fresh water lake in Western Europe and used as a drinking water source for more than 800,000 people and a recreational site for habitants around it. The hydrodynamic simulation of the lake is validated by field measurement at observation platforms while the particle tracking module is validated by satellite images processed for water quality parameters. Decay of enterovirus is incorporated in the postprocessing part of the model, supported by previous researches in the literature and experiments in the laboratory, considering temperature, solar radiation and microbial activity as the major environmental stressors for enterovirus. Finally, the modeled concentration of enterovirus is employed as an input for a QMRA model to assess the risk of infection and illness to human beings that are exposed to this specific virus genus. Future environmental changes will definitely influence the fate and persistence of the virus and will also be simulated by the proposed model. The perspective of this research is to generate a robust tool to predict virus dynamics in deep lakes and investigate the potential risk concerning human interaction with the contaminated lake water. It is a novel endeavor in water quality modeling and will support decision makers to draw conclusions regarding safe usage of lake water resources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
48 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gebregziabher, Zenebe;

    The study on Rural Energy and Household Forest Values under Varying Management Regimes was conducted in Ethiopia. The general objective of this survey is to study household behavior regarding sustainable land use. Households were selected from the main four regions of Ethiopia (Amhara, Oromia, SNNP, and Tigray) in 2009. The data was generated by researchers at the Ethiopian Development Research Institute and Gothenburg University. The general objective of this survey is to study household behavior regarding communally managed forest resources. The datasets submitted here consist of different data files in Stata format. Each file corresponds to a section in the questionnaire. The study on Rural Energy and Household Forest Values under Varying Management Regimes was conducted in Ethiopia. The general objective of this survey is to study household behavior regarding sustainable land use. Households were selected from the main four regions of Ethiopia (Amhara, Oromia, SNNP, and Tigray) in 2009. The data was generated by researchers at the Ethiopian Development Research Institute and Gothenburg University. The general objective of this survey is to study household behavior regarding communally managed forest resources. The datasets consist of different data files in Stata format. Each file corresponds to a section in the questionnaire.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 2020
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 2020
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Piccitto A.; Corinzia S.A.; Scordia D.; Calcagno S.; +4 Authors

    Giant reed (Arundo Donax L.) is a perennial, non-food and low-input energy crop representing a promising solution to produce renewable energy at low cost, especially in marginal areas - i.e. low profitable areas which are prone to land abandonment. This research investigates the effect of two levels of irrigation (100% ETm and rainfed) on a 20-year old plantation of 40 genotypes of giant reed (Arundo donax L.) collected around Southern Italy. The experimental methanogenic potential of the biomass was defined trough the BMP test (Biochemical Methane Potential). The trial shows that several genotypes maintain high biomass yield and thus high biomethane potential yield even from old plantations. The variability of biomass yield and biomethane potential yield among genotypes is high. Giant reed genotypes show a positive response to the irrigation, which represent the main limiting factor in Mediterranean environments. Proceedings of the 28th European Biomass Conference and Exhibition, 6-9 July 2020, Virtual, pp. 234-237

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2020
    Data sources: CNR ExploRA
    https://dx.doi.org/10.5071/28t...
    Conference object . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2020
      Data sources: CNR ExploRA
      https://dx.doi.org/10.5071/28t...
      Conference object . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Anna Maria De Girolamo; Antonio Lo Porto; Rosalie Vandromme; Olivier Cerdan;

    The three different future scenarios showed an increase in mean temperature for all months between 0.5-2.4°C and a reduction in precipitation (by 4-7%) for the period 2030-2059 (MPI, KNMI, SMHI). The results of the present work show that climate change will bring a reduction of water resource availability and some alterations in the hydrological regime. The SWAT model, which proved to be a valuable operational tool for evaluating the potential impact of climate change on water resources, estimates a reduction of total water yield and a shift of the flow regime towards drier conditions, although the river type classification will probably remain essentially unvaried. A sever reduction of snowfall in the mountainous part of the basin was also estimated that is expected to impact the flow regime. However, it is important to take into account that several sources of uncertainties, which depend both on the used hydrological models and on the climate change scenarios, affect the predictions of the hydrological response of a river basin under climate change. In addition, some of the assumptions made (i.e. that land use does not change in the future) could be incorrect as climate change could also result in a significant alteration of land cover. Hence, we have to consider projections not as a predictive method, but as a tool that may be used to assess changes in process dynamics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Report . 2019
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Report . 2019
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Schafer Gerhard; Diakoparaskevas Paraskevas; Varouchakis Emmanouel; Anyfanti Ioanna; +1 Authors

    The primary focus of this task is the prediction of the effect of some stakeholder proposed prevention and mitigation measures as well as the impact of climate change scenarios on coastal aquifers regarding the groundwater flow and fate and the transport of contaminants. To be operational and practical, the calibrated numerical simulator FEFLOW was used to model the flow and solute transport in the four coastal aquifers under study. The modelling approach was based on a spatial discretization of the physical domain of the aquifer in three dimensions. Depending on the type of aquifer being modelled, the observed temporal variation in groundwater flow, the risk of saltwater intrusion, and the availability of flow and transport parameters and data, the appropriate modelling approach was selected. The outcome of the modelling task is integrated in the establishment and application of sustainable governance approaches for the four coastal aquifers. As the numerical modelling approach is an essential part of the multi-criteria Decision Support System (DSS), our modelling approach included climate change scenarios to model the impact of future rainfall data on predicted ground water levels, which may significantly impact both the available groundwater reserves and groundwater quality.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Report . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Report . 2023
    Data sources: Datacite
    ZENODO
    Report . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Report . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Report . 2023
      Data sources: Datacite
      ZENODO
      Report . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Brunetti A.; Drioli E.; Lee Y.M.; Barbieri G;

    The possible application of membranes for CO2 separation in the treatment of non-valuable streams (e.g., flue gas of a power plant or cement industry) or valuable streams (e.g.,biogas) has been analyzed. Some selection criteria useful in the choice of membrane gas separation for CO2 capture are discussed to evaluate the advantages potentially offered by membrane systems. Membrane selectivity ranging from 30-50 (values of commercial membranes) to 100-500 (values of most promising laboratory membranes) and different feed/permeate pressure ratios were considered for the various cases. The composition and recovery of carbon dioxide in the membrane-treated stream were the target parameters taken into account as guidelines in the evaluation of the separation technology performance. General "maps" of CO2 permeate concentration versus CO2 recovery have been developed by means of a simple tool that takes into account the influence of the most importantp arameters affecting the membrane system performance (that is,membrane selectivity and permeation driving force).The analyses indicated that the separation depends on various interrelated factors: the membrane material (selectivity and flux), the operating conditions (pressure ratio), and the final requirements (CO2 recovery and composition).Also, the operational limit and the potentialities of the membrane gas separation technology were analyzed under these conditions.The "maps" proposed and utilized for CO2 separation are valid and can beutilized for other gas separations in which the membrane shows selectivities similar to those taken into account here.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2014
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2014
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gary Free1; Claudia Giardino1; Mariano Bresciani1; Monica Pinardi1; +2 Authors

    Lakes are integrators of environmental and climatic changes occurring within their contributing basins. Understanding the complex behavior of lakes in a changing environment is essential to effective water resource management and mitigation of climate change. The ESA CCI Lakes is a multi-disciplinary project (https://climate.esa.int/en/projects/lakes/) creating the largest and longest consistent global record of five lake climate variables: lake water level, extent, temperature, surface-leaving reflectance, and ice cover. Phase 1 covered 250 lakes and phase 2 will cover up to 2000 globally. The distribution of the global dataset will be presented followed by a focus on Lake Trasimeno, a shallow eutrophic lake in central Italy included in the Long-Term Ecosystem Research (LTER) network. We used AI and Non-Parametric Multiplicative Regression (NPMR) to analyze the data. Chlorophyll-a in lake Trasimeno was dominated by a summer bloom initiating in July and peaking in early September and was largely predicted by the time variable - accounting for 87% of feature importance. The North Atlantic Oscillation was the next most important variable (4% feature importance) corroborated by NPand shown to be largely important during early to mid-September when a positive NAO, associated with high pressure and warm sunny weather, led to an increase in chlorophyll-a concentrations. Regional climatic indices as well as the more obvious nutrient drivers of algal blooms should therefore be considered in lake management. High Frequency chlorophyll-a and phycocyanin data from a WISPstation showed that rapid fluctuations visible in the satellite record are supported by in situ data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lopes, Sofia Oliveira; Fontes, Fernando A. C. C.; Pereira, Rui M. S.; Machado, Gaspar J.;

    In this article, we present a simple mathematical model that will help us to optimize the control of irrigation in field of potatoes in the Lisbon area. It is well known that the Iberian Peninsula is going to be one of the most affected by climate change (lack of water will increase and prolonged periods of drought as can be read in the last Assessment Report by IPPCC), and therefore, irrigation needs to be intelligent in such a way that water is saved. The model presented is simple and still far from reality. It was implemented in MatLab and the results look promising. The lack of data, however was a problem. Still, the model can improve greatly, once we implement a project we have, that will use a real field with instruments that will give us readings in site and on line. This research was financed by FEDER Funds through Programa Operacional Factores de Competitividade - COMPETE and by Portuguese Funds through FCT - Fundação para a Ciência e a Tecnologia, within the Project PEst-C/MAT/UI0013/2011.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Universidade do Minh...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gianico A.; Gallipoli A.; Braguglia C.M.; Mininni G.;

    The application of ultrasound to sludge is an efficient method for sludge disintegration in order to accelerate the anaerobic digestion process, but energy balance on the basis of lab tests is disadvantaged due to the inefficiency at this scale. In this paper the energy balance is discussed for five full scale WWTPs equipped with different devices with the aim to investigate the cost-effectiveness of the ultrasonic pre-treatment before digestion. These five experiences show positive energy gains operating at 20 kHz: best performances are attained at short sonication time and high sonication power. Moreover, sludge sonication at 200 kHz is presented as an alternative pretreatment to improve the anaerobic digestibility and to remove potentially organic micropollutants. Lab experiment results of this treatment indicated quite good disintegration effect, in terms of substrate solubilization, with consequent acceleration of the hydrolysis phase and increase of biogas production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Braconnier, Serge; Gutjhard, Sylvain; Trouche, Gilles; Reddy, Bellum; +14 Authors

    Geopolitical tensions in some oil producing regions and the uncertainties surrounding the future availability of fossil fuels, as well as the urgent necessity to mitigate negative impacts on climate through reduced CO2 emissions, have created a strong interest for biofuels. Among potential crops for the production of biofuels, sorghum is an interesting C4 plant, able to combine production of food and fuel as well as a variety of other products. However, new ideotypes of sorghum need to be defined in order to optimise efficiency with respect to the following three potential use options of sorghum: (1) production of ethanol through second generation processes, (2) production of first generation ethanol combined with the use of bagasse for co-generation, and (3) production of first generation ethanol combined with the production of grain and the use of bagasse as fodder. This paper presents results elaborated in the framework of the project SWEETFUEL, supported by the European Commission, on the successful combination of traits of new sorghum ideotypes suitable for the three abovementioned use options. Proceedings of the 19th European Biomass Conference and Exhibition, 6-10 June 2011, Berlin, Germany, pp. 782-786

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2011
    Data sources: Agritrop
    https://dx.doi.org/10.5071/19t...
    Conference object . 2011
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2011
      Data sources: Agritrop
      https://dx.doi.org/10.5071/19t...
      Conference object . 2011
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Li, Chaojie;

    Lakes are a fundamental feature of nature with brilliance, profoundness and complexity. Various of physical, chemical and biological changes take place three dimensionally in deep lakes, regulated by complicated boundary conditions. To understand and predict such aquatic systems is not an easy task, but scientists have endeavored to accomplish it by field measurements and numerical simulations, focusing on hydrodynamics, water quality and ecology. Although important to the aquatic system and human health, pathogen dynamics in lakes has not been addressed with priority in most studies about lakes, with even less attention for pathogenic virus in general, or specific virus genera or strains. In this study, we propose a coupled 3D hydrodynamic and particle tracking model, to study the fate and transport of the Enterovirus genus with twelve specific strains, followed by a Quantitative Microbial Risk Assessment model to estimate the risk of infection and illness for humans when interacting with lake water in many forms. Lake Geneva is chosen as the study site, as it is the biggest fresh water lake in Western Europe and used as a drinking water source for more than 800,000 people and a recreational site for habitants around it. The hydrodynamic simulation of the lake is validated by field measurement at observation platforms while the particle tracking module is validated by satellite images processed for water quality parameters. Decay of enterovirus is incorporated in the postprocessing part of the model, supported by previous researches in the literature and experiments in the laboratory, considering temperature, solar radiation and microbial activity as the major environmental stressors for enterovirus. Finally, the modeled concentration of enterovirus is employed as an input for a QMRA model to assess the risk of infection and illness to human beings that are exposed to this specific virus genus. Future environmental changes will definitely influence the fate and persistence of the virus and will also be simulated by the proposed model. The perspective of this research is to generate a robust tool to predict virus dynamics in deep lakes and investigate the potential risk concerning human interaction with the contaminated lake water. It is a novel endeavor in water quality modeling and will support decision makers to draw conclusions regarding safe usage of lake water resources.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5075/epf...
    Doctoral thesis . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5075/epf...
      Doctoral thesis . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph