- home
- Advanced Search
- Energy Research
- 2021-2025
- Open Source
- Embargo
- CNR ExploRA
- Energy Research
- 2021-2025
- Open Source
- Embargo
- CNR ExploRA
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Giovanni Tumminia; Francesco Sergi; Davide Aloisio; Sonia Longo; Maria Anna Cusenza; Francesco Guarino; Salvatore Cellura; Marco Ferraro;handle: 20.500.14243/397564 , 11583/2971229
Although nearly zero energy buildings have attracted growing research attention, literature analysis shows that only a limited number of researches try to couple load match/grid interaction issues and environmental impacts in early design stages. The study proposes a novel multidisciplinary design approach that allows to integrate these two conflicting aspects aiming to find trade-offs. The proposed approach has been applied to a building case study, equipped with a photovoltaics system without energy storage. The results show that even though on yearly basis the energy use (5,290 kWhe) is largely overcome by the on-site energy generation (8069 kWhe), an oversized PV system alone may not be the best solution for reducing the environmental impact of the building sector, besides not being very efficient in improving load match. Afterwards, a parametric analysis was carry out analysing three redesign scenarios, obtained varying the sizes of the PV system and installing different sizes of the storage systems. The results show that the use of storage systems, in addition to decrease the grid dependency, can increase the environmental benefits arising from the renewable energy sources (e.g. there is a decrease of global warming potential of 48%, compared to the base case, with 5.28 kWp PV system and 10 kWh storage system). Conflicting results are found according to specific impact categories and this suggests the need for a holistic approach, including different domains and indicators. In this context, the proposed approach can contribute to the transition toward low-carbon energy technologies, by supporting researches and designers to take environmentally sound considerations.
CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2022 ItalyPublisher:Springer International Publishing L Bianconi; Y Lechiara; L Bixio; R Palermo; S Pensieri; F Viti; R Bozzano;handle: 20.500.14243/414713
Citizen well-being during indoor and outdoor activities is a prerogative in the paradigm of smart city. Air quality, together with thermo-hygrometric, light and noise comfort are some of the most relevant parameters that affect the perception of the state of well-being. An internet of things (IoT) network based on LoRaWAN end-nodes has been set up with the aim to provide an approach to improve the well-being of citizens living in an urban district in Savona (Liguria region, Italy) under the umbrella of the PickUP project. The main focus of the project was the design of innovative methods and tools for energy and environmental management and the reduction of consumption in heterogeneous districts. The proposed IoT architecture comprises a Fog node constituted of a Raspberry Pi 4 to analyze in near-real-time the heterogeneous data and to provide feedback to the proper actuators in case of need of changes in the ventilation and heating of the occupied room. Moreover, the infrastructure provides insights about the air quality in outdoor areas to local authorities, in order to implement mitigation action or strategies. Results demonstrate the usefulness of the proposed architecture with a precise focus on social impact, but also reveal economic implications linked to an intelligent use of energy resources and to the development of energy efficiency strategies.
CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-06371-8_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-06371-8_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Giovanni Tumminia; Francesco Sergi; Davide Aloisio; Sonia Longo; Maria Anna Cusenza; Francesco Guarino; Salvatore Cellura; Marco Ferraro;handle: 20.500.14243/397564 , 11583/2971229
Although nearly zero energy buildings have attracted growing research attention, literature analysis shows that only a limited number of researches try to couple load match/grid interaction issues and environmental impacts in early design stages. The study proposes a novel multidisciplinary design approach that allows to integrate these two conflicting aspects aiming to find trade-offs. The proposed approach has been applied to a building case study, equipped with a photovoltaics system without energy storage. The results show that even though on yearly basis the energy use (5,290 kWhe) is largely overcome by the on-site energy generation (8069 kWhe), an oversized PV system alone may not be the best solution for reducing the environmental impact of the building sector, besides not being very efficient in improving load match. Afterwards, a parametric analysis was carry out analysing three redesign scenarios, obtained varying the sizes of the PV system and installing different sizes of the storage systems. The results show that the use of storage systems, in addition to decrease the grid dependency, can increase the environmental benefits arising from the renewable energy sources (e.g. there is a decrease of global warming potential of 48%, compared to the base case, with 5.28 kWp PV system and 10 kWh storage system). Conflicting results are found according to specific impact categories and this suggests the need for a holistic approach, including different domains and indicators. In this context, the proposed approach can contribute to the transition toward low-carbon energy technologies, by supporting researches and designers to take environmentally sound considerations.
CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2022 ItalyPublisher:Springer International Publishing L Bianconi; Y Lechiara; L Bixio; R Palermo; S Pensieri; F Viti; R Bozzano;handle: 20.500.14243/414713
Citizen well-being during indoor and outdoor activities is a prerogative in the paradigm of smart city. Air quality, together with thermo-hygrometric, light and noise comfort are some of the most relevant parameters that affect the perception of the state of well-being. An internet of things (IoT) network based on LoRaWAN end-nodes has been set up with the aim to provide an approach to improve the well-being of citizens living in an urban district in Savona (Liguria region, Italy) under the umbrella of the PickUP project. The main focus of the project was the design of innovative methods and tools for energy and environmental management and the reduction of consumption in heterogeneous districts. The proposed IoT architecture comprises a Fog node constituted of a Raspberry Pi 4 to analyze in near-real-time the heterogeneous data and to provide feedback to the proper actuators in case of need of changes in the ventilation and heating of the occupied room. Moreover, the infrastructure provides insights about the air quality in outdoor areas to local authorities, in order to implement mitigation action or strategies. Results demonstrate the usefulness of the proposed architecture with a precise focus on social impact, but also reveal economic implications linked to an intelligent use of energy resources and to the development of energy efficiency strategies.
CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-06371-8_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-06371-8_9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu