- home
- Advanced Search
- Energy Research
- 13. Climate action
- English
- Frontiers in Environmental Science
- Energy Research
- 13. Climate action
- English
- Frontiers in Environmental Science
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Frontiers Media S.A. Authors: Fabian Baier; Mathias Jedinger; Edith Gruber; Johann G. Zaller;Glyphosate-based herbicide formulations are broadly used in agriculture, silviculture, horticulture as well as in private gardens all over the world, thus posing the risk of potential contamination of nearby aquatic bodies inhabited by amphibians. Concurrently, climate change can be expected to alter the temperature of amphibian breeding sites. However, while either glyphosate-based herbicides or temperature have been shown to separately affect the development of amphibians, very little is known on possible interactive effects. We studied the impact of herbicide concentrations and temperature on growth and development of eggs and tadpoles of the Common toad (Bufo bufo L.). We hypothesized that (i) eggs would be better protected against herbicides than tadpoles because of their jelly coating, (ii) that higher temperatures would reduce potential herbicide effects because of an accelerated growth and a lower sensitivity of larger specimens. We conducted one experiment starting with eggs (Gosner stage, GS 9) and another experiment starting with tadpoles (GS 21-24) using a full factorial design with 5 concentrations of the herbicide formulation Roundup® LB Plus (0 mg acid equivalent L-1, 0.5 mg a.e. L-1, 1.0 mg a.e. L-1 or 1.5 mg a.e. L-1 and a pulse treatment with 3-4 times addition of 0.5 a.e. mg L-1 over the course of several weeks) and two temperature levels (15°C and 20°C). Contrary to our expectation, our results showed that toad eggs are more sensitive to herbicides than tadpoles leading to an averaged 31% increase in total length, tail length and body length compared to the herbicide-free control. Tadpole morphology, development or mortality was not influenced by herbicides. Higher temperature accelerated growth of both eggs and tadpoles. This is among the first study showing interactive effects between herbicides and temperature especially for egg development resulting in more pronounced herbicide effects at lower temperatures than at higher temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::18401f76e5ff841761b53a95ab51757d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::18401f76e5ff841761b53a95ab51757d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2021 NetherlandsPublisher:Frontiers Research Foundation Hogeboom, Rick J.; Borsje, Bas W.; Deribe, Mekdelawit M.; van der Meer, F.D.; Mehvar, Seyedabdolhossein; Meyer, M.A.; Özerol, Gül; Hoekstra, Arjen Y.; Nelson, A.D.;Resilience thinking is increasingly promoted to address some of the grand challenges of the 21st century: providing water, energy, and food to all, while staying within the limits of the Earth system that is undergoing (climate) change. Concurrently, a partially overlapping body of literature on the water–energy–food (WEF) nexus has emerged through the realization that water, energy, and food systems are intricately linked—and should therefore be understood and managed in conjunction. This paper reviews recent scientific publications at the intersection of both concepts in order to i) examine the status quo on resilience thinking as it is applied in WEF nexus studies; ii) map the research landscape along major research foci and conceptualizations; iii) and propose a research agenda of topics distilled from gaps in the current research landscape. We identify key conceptualizations of both resilience and nexus framings that are used across studies, as we observe pronounced differences regarding the nexus’ nature, scope, emphasis and level of integration, and resilience’s scope, type, methodological and thematic foci. Promising research avenues include i) improving the understanding of resilience in the WEF nexus across scales, sectors, domains, and disciplines; ii) developing tools and indicators to measure and assess resilience of WEF systems; iii) bridging the implementation gap brought about by (governing) complexity; iv) integrating or reconciling resilience and nexus thinking; v) and considering other development principles and frameworks toward solving WEF challenges beside and beyond resilience, including control, efficiency, sustainability, and equity.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceReview . 2021Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02403::05866cc8e5439110d855a680f1845e73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceReview . 2021Data sources: University of Twente Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___02403::05866cc8e5439110d855a680f1845e73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu