- home
- Advanced Search
- Energy Research
- 2021-2025
- Sensors
- Energy Research
- 2021-2025
- Sensors
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 ItalyPublisher:MDPI AG Authors: Civera M.; Surace C.;A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedFunded by:University of LimerickUniversity of LimerickSanober Farheen Memon; Ruoning Wang; Bob Strunz; Bhawani Shankar Chowdhry; J. Tony Pembroke; Elfed Lewis;A range of optical fibre-based sensors for the measurement of ethanol, primarily in aqueous solution, have been developed and are reviewed here. The sensing approaches can be classified into four groups according to the measurement techniques used, namely absorption (or absorbance), external interferometric, internal fibre grating and plasmonic sensing. The sensors within these groupings can be compared in terms of their characteristic performance indicators, which include sensitivity, resolution and measurement range. Here, particular attention is paid to the potential application areas of these sensors as ethanol production is globally viewed as an important industrial activity. Potential industrial applications are highlighted in the context of the emergence of the internet of things (IoT), which is driving widespread utilization of these sensors in the commercially significant industrial and medical sectors. The review concludes with a summary of the current status and future prospects of optical fibre ethanol sensors for industrial use.
Sensors arrow_drop_down University of Limerick Institutional RepositoryArticle . 2022 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22030950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down University of Limerick Institutional RepositoryArticle . 2022 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22030950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Publicly fundedFunded by:EC | SCOREEC| SCOREAuthors: Tasneem Ahmed; Leo Creedon; Salem Gharbia;Unequivocal change in the climate system has put coastal regions around the world at increasing risk from climate-related hazards. Monitoring the coast is often difficult and expensive, resulting in sparse monitoring equipment lacking in sufficient temporal and spatial coverage. Thus, low-cost methods to monitor the coast at finer temporal and spatial resolution are imperative for climate resilience along the world’s coasts. Exploiting such low-cost methods for the development of early warning support could be invaluable to coastal settlements. This paper aims to provide the most up-to-date low-cost techniques developed and used in the last decade for monitoring coastal hazards and their forcing agents via systematic review of the peer-reviewed literature in three scientific databases: Scopus, Web of Science and ScienceDirect. A total of 60 papers retrieved from these databases through the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol were analysed in detail to yield different categories of low-cost sensors. These sensors span the entire domain for monitoring coastal hazards, as they focus on monitoring coastal zone characteristics (e.g., topography), forcing agents (e.g., water levels), and the hazards themselves (e.g., coastal flooding). It was found from the meta-analysis of the retrieved papers that terrestrial photogrammetry, followed by aerial photogrammetry, was the most widely used technique for monitoring different coastal hazards, mainly coastal erosion and shoreline change. Different monitoring techniques are available to monitor the same hazard/forcing agent, for instance, unmanned aerial vehicles (UAVs), time-lapse cameras, and wireless sensor networks (WSNs) for monitoring coastal morphological changes such as beach erosion, creating opportunities to not only select but also combine different techniques to meet specific monitoring objectives. The sensors considered in this paper are useful for monitoring the most pressing challenges in coastal zones due to the changing climate. Such a review could be extended to encompass more sensors and variables in the future due to the systematic approach of this review. This study is the first to systematically review a wide range of low-cost sensors available for the monitoring of coastal zones in the context of changing climate and is expected to benefit coastal researchers and managers to choose suitable low-cost sensors to meet their desired objectives for the regular monitoring of the coast to increase climate resilience.
Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 8 Powered bymore_vert Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Sanguk Park; Keonhee Cho; Seunghwan Kim; Guwon Yoon; Myeong-In Choi; Sangmin Park; Sehyun Park;Smart energy technologies, services, and business models are being developed to reduce energy consumption and emissions of CO2 and greenhouse gases and to build a sustainable environment. Renewable energy is being actively developed throughout the world, and many intelligent service models related to renewable energy are being proposed. One of the representative service models is the energy prosumer. Through energy trading, the demand for renewable energy and distributed power is efficiently managed, and insufficient energy is covered through energy transaction. Moreover, various incentives can be provided, such as reduced electricity bills. However, despite such a smart service, the energy prosumer model is difficult to expand into a practical business model for application in real life. This is because the production price of renewable energy is higher than that of the actual grid, and it is difficult to accurately set the selling price, restricting the formation of the actual market between sellers and consumers. To solve this problem, this paper proposes a small-scale energy transaction model between a seller and a buyer on a peer-to-peer (P2P) basis. This model employs a virtual prosumer management system that utilizes the existing grid and realizes the power system in real time without using an energy storage system (ESS). Thus, the profits of sellers and consumers of energy transactions are maximized with an improved return on investment (ROI), and an intelligent demand management system can be established.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Authors: Saad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; +2 AuthorsSaad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; Wael I. Mohamed; Moayed Mohamed;This paper presents a comprehensive exploration of a hybrid energy system that integrates wind turbines with photovoltaics (PVs) to address the intermittent nature of electricity production from these sources. The necessity for such technology arises from the sporadic nature of electricity generated by PV cells and wind turbines. The envisioned outcome is an emissions-free, more efficient alternative to traditional energy sources. A variety of optimization techniques are utilized, specifically the Particle Swarm Optimization (PSO) algorithm and Electric Eel Foraging Optimization (EEFO), to achieve optimal power regulation and seamless integration with the public grid, as well as to mitigate anticipated loading issues. The employed mathematical modeling and simulation techniques are used to assess the effectiveness of EEFO in optimizing the operation of grid-connected PV and wind turbine hybrid systems. In this paper, the optimization methods applied to the system’s architecture are described in detail, providing a clear understanding of the intricate nature of the approach. The efficacy of these optimization strategies is rigorously evaluated through simulations of diverse operating scenarios using MATLAB/SIMULINK. The results demonstrate that the proposed optimization strategies are not only capable of precisely and swiftly compensating for linked loads, but also effectively controlling the energy supply to maintain the load’s power at the desired level. The findings underscore the potential of this hybrid energy system to offer a sustainable and reliable solution for meeting power demands, contributing to the advancement of clean and efficient energy technologies. The results demonstrate the capability of the proposed approach to improve system performance, maximize energy yield, and enhance grid integration, thereby contributing to the advancement of renewable energy technologies and sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bahareh Kiamanesh; Ali Behravan; Roman Obermaisser;Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Gaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; +2 AuthorsGaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; Girdinio, Paola; Marchese, Mario;Distributed Energy Resources (DERs) are growing in importance Power Systems. Battery Electrical Storage Systems (BESS) represent fundamental tools in order to balance the unpredictable power production of some Renewable Energy Sources (RES). Nevertheless, BESS are usually remotely controlled by SCADA systems, so they are prone to cyberattacks. This paper analyzes the vulnerabilities of BESS and proposes an anomaly detection algorithm that, by observing the physical behavior of the system, aims to promptly detect dangerous working conditions by exploiting the capabilities of a particular neural network architecture called the autoencoder. The results show the performance of the proposed approach with respect to the traditional One Class Support Vector Machine algorithm.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammed F. Alsharekh; Shabana Habib; Deshinta Arrova Dewi; Waleed Albattah; Muhammad Islam; Saleh Albahli;Multistep power consumption forecasting is smart grid electricity management’s most decisive problem. Moreover, it is vital to develop operational strategies for electricity management systems in smart cities for commercial and residential users. However, an efficient electricity load forecasting model is required for accurate electric power management in an intelligent grid, leading to customer financial benefits. In this article, we develop an innovative framework for short-term electricity load forecasting, which includes two significant phases: data cleaning and a Residual Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM) architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep R-CNN architecture is developed in the second phase to extract essential features from the refined electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to learn the sequence information, and finally, fully connected layers are used for the forecasting. The proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively decreases the error rates compared to baseline models.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, ItalyPublisher:MDPI AG Authors: Alessandro Andreadis; Giovanni Giambene; Riccardo Zambon;This paper deals with IoT devices deployed in remote areas without terrestrial Internet connectivity. We consider connecting IoT devices on the ground to the Internet through an aerial system based on an Unmanned Aerial Vehicle (UAV) for smart agriculture and environmental monitoring. The UAV flying over the remote area receives data from distributed IoT devices. The transmissions between the ground sensors and the UAV are carried out via LoRa. We have proposed a synchronization protocol for the opportunistic communication of LoRa IoT devices with a gateway onboard the UAV to save node battery life. Class A LoRa nodes on the ground transmit only when the UAV is expected to pass close to them; otherwise, they stay in the sleeping state most of the time. This paper provides a detailed description of the formulation of the synchronization protocol. The UAV’s flying dynamics have been considered for characterizing its speed and the time of visibility of each IoT sensor. Our model has allowed an analytical approach that can help to determine the best settings for LoRa transmissions. Finally, experiments have been carried out to assess the path loss attenuation, and a laboratory setup of the synchronization protocol has been implemented for the preliminary validation of our scheme.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/9/4481/pdfData sources: Multidisciplinary Digital Publishing InstituteUsiena air - Università di SienaArticle . 2023License: CC BYData sources: Usiena air - Università di SienaUniversità degli Studi di Siena: USiena airArticle . 2023Full-Text: https://hdl.handle.net/11365/1232074Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23094481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/9/4481/pdfData sources: Multidisciplinary Digital Publishing InstituteUsiena air - Università di SienaArticle . 2023License: CC BYData sources: Usiena air - Università di SienaUniversità degli Studi di Siena: USiena airArticle . 2023Full-Text: https://hdl.handle.net/11365/1232074Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23094481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Junhyung Moon; Minsuk Oh; Soljee Kim; Kyoungwoo Lee; Junga Lee; Yoonkyung Song; Justin Y. Jeon;The limited availability of calorimetry systems for estimating human energy expenditure (EE) while conducting exercise has prompted the development of wearable sensors utilizing readily accessible methods. We designed an energy expenditure estimation method which considers the energy consumed during the exercise, as well as the excess post-exercise oxygen consumption (EPOC) using machine learning algorithms. Thirty-two healthy adults (mean age = 28.2 years; 11 females) participated in 20 min of aerobic exercise sessions (low intensity = 40% of maximal oxygen uptake [VO2 max], high intensity = 70% of VO2 max). The physical characteristics, exercise intensity, and the heart rate data monitored from the beginning of the exercise sessions to where the participants’ metabolic rate returned to an idle state were used in the EE estimation models. Our proposed estimation shows up to 0.976 correlation between estimated energy expenditure and ground truth (root mean square error: 0.624 kcal/min). In conclusion, our study introduces a highly accurate method for estimating human energy expenditure during exercise using wearable sensors and machine learning. The achieved correlation up to 0.976 with ground truth values underscores its potential for widespread use in fitness, healthcare, and sports performance monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 ItalyPublisher:MDPI AG Authors: Civera M.; Surace C.;A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoReview . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 IrelandPublisher:MDPI AG Publicly fundedFunded by:University of LimerickUniversity of LimerickSanober Farheen Memon; Ruoning Wang; Bob Strunz; Bhawani Shankar Chowdhry; J. Tony Pembroke; Elfed Lewis;A range of optical fibre-based sensors for the measurement of ethanol, primarily in aqueous solution, have been developed and are reviewed here. The sensing approaches can be classified into four groups according to the measurement techniques used, namely absorption (or absorbance), external interferometric, internal fibre grating and plasmonic sensing. The sensors within these groupings can be compared in terms of their characteristic performance indicators, which include sensitivity, resolution and measurement range. Here, particular attention is paid to the potential application areas of these sensors as ethanol production is globally viewed as an important industrial activity. Potential industrial applications are highlighted in the context of the emergence of the internet of things (IoT), which is driving widespread utilization of these sensors in the commercially significant industrial and medical sectors. The review concludes with a summary of the current status and future prospects of optical fibre ethanol sensors for industrial use.
Sensors arrow_drop_down University of Limerick Institutional RepositoryArticle . 2022 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22030950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down University of Limerick Institutional RepositoryArticle . 2022 . Peer-reviewedData sources: University of Limerick Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22030950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Publicly fundedFunded by:EC | SCOREEC| SCOREAuthors: Tasneem Ahmed; Leo Creedon; Salem Gharbia;Unequivocal change in the climate system has put coastal regions around the world at increasing risk from climate-related hazards. Monitoring the coast is often difficult and expensive, resulting in sparse monitoring equipment lacking in sufficient temporal and spatial coverage. Thus, low-cost methods to monitor the coast at finer temporal and spatial resolution are imperative for climate resilience along the world’s coasts. Exploiting such low-cost methods for the development of early warning support could be invaluable to coastal settlements. This paper aims to provide the most up-to-date low-cost techniques developed and used in the last decade for monitoring coastal hazards and their forcing agents via systematic review of the peer-reviewed literature in three scientific databases: Scopus, Web of Science and ScienceDirect. A total of 60 papers retrieved from these databases through the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol were analysed in detail to yield different categories of low-cost sensors. These sensors span the entire domain for monitoring coastal hazards, as they focus on monitoring coastal zone characteristics (e.g., topography), forcing agents (e.g., water levels), and the hazards themselves (e.g., coastal flooding). It was found from the meta-analysis of the retrieved papers that terrestrial photogrammetry, followed by aerial photogrammetry, was the most widely used technique for monitoring different coastal hazards, mainly coastal erosion and shoreline change. Different monitoring techniques are available to monitor the same hazard/forcing agent, for instance, unmanned aerial vehicles (UAVs), time-lapse cameras, and wireless sensor networks (WSNs) for monitoring coastal morphological changes such as beach erosion, creating opportunities to not only select but also combine different techniques to meet specific monitoring objectives. The sensors considered in this paper are useful for monitoring the most pressing challenges in coastal zones due to the changing climate. Such a review could be extended to encompass more sensors and variables in the future due to the systematic approach of this review. This study is the first to systematically review a wide range of low-cost sensors available for the monitoring of coastal zones in the context of changing climate and is expected to benefit coastal researchers and managers to choose suitable low-cost sensors to meet their desired objectives for the regular monitoring of the coast to increase climate resilience.
Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 8 Powered bymore_vert Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:MDPI AG Sanguk Park; Keonhee Cho; Seunghwan Kim; Guwon Yoon; Myeong-In Choi; Sangmin Park; Sehyun Park;Smart energy technologies, services, and business models are being developed to reduce energy consumption and emissions of CO2 and greenhouse gases and to build a sustainable environment. Renewable energy is being actively developed throughout the world, and many intelligent service models related to renewable energy are being proposed. One of the representative service models is the energy prosumer. Through energy trading, the demand for renewable energy and distributed power is efficiently managed, and insufficient energy is covered through energy transaction. Moreover, various incentives can be provided, such as reduced electricity bills. However, despite such a smart service, the energy prosumer model is difficult to expand into a practical business model for application in real life. This is because the production price of renewable energy is higher than that of the actual grid, and it is difficult to accurately set the selling price, restricting the formation of the actual market between sellers and consumers. To solve this problem, this paper proposes a small-scale energy transaction model between a seller and a buyer on a peer-to-peer (P2P) basis. This model employs a virtual prosumer management system that utilizes the existing grid and realizes the power system in real time without using an energy storage system (ESS). Thus, the profits of sellers and consumers of energy transactions are maximized with an improved return on investment (ROI), and an intelligent demand management system can be established.
Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1424-8220/21/13/4533/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21134533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:MDPI AG Authors: Saad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; +2 AuthorsSaad A. Mohamed Abdelwahab; Ali M. El-Rifaie; Hossam Youssef Hegazy; Mohamed A. Tolba; Wael I. Mohamed; Moayed Mohamed;This paper presents a comprehensive exploration of a hybrid energy system that integrates wind turbines with photovoltaics (PVs) to address the intermittent nature of electricity production from these sources. The necessity for such technology arises from the sporadic nature of electricity generated by PV cells and wind turbines. The envisioned outcome is an emissions-free, more efficient alternative to traditional energy sources. A variety of optimization techniques are utilized, specifically the Particle Swarm Optimization (PSO) algorithm and Electric Eel Foraging Optimization (EEFO), to achieve optimal power regulation and seamless integration with the public grid, as well as to mitigate anticipated loading issues. The employed mathematical modeling and simulation techniques are used to assess the effectiveness of EEFO in optimizing the operation of grid-connected PV and wind turbine hybrid systems. In this paper, the optimization methods applied to the system’s architecture are described in detail, providing a clear understanding of the intricate nature of the approach. The efficacy of these optimization strategies is rigorously evaluated through simulations of diverse operating scenarios using MATLAB/SIMULINK. The results demonstrate that the proposed optimization strategies are not only capable of precisely and swiftly compensating for linked loads, but also effectively controlling the energy supply to maintain the load’s power at the desired level. The findings underscore the potential of this hybrid energy system to offer a sustainable and reliable solution for meeting power demands, contributing to the advancement of clean and efficient energy technologies. The results demonstrate the capability of the proposed approach to improve system performance, maximize energy yield, and enhance grid integration, thereby contributing to the advancement of renewable energy technologies and sustainable energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s24072354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Bahareh Kiamanesh; Ali Behravan; Roman Obermaisser;Heating, ventilation, and air-conditioning (HVAC) systems are large-scale distributed systems that can be subject to multiple faults affecting the electronics, sensors, and actuators, potentially causing high energy consumption, occupant discomfort, degraded indoor air quality and risk to critical infrastructure. Fault injection (FI) is an effective experimental method for the validation and dependability evaluation of such HVAC systems. Today’s FI frameworks for HVAC systems are still based on a single fault hypothesis and do not provide insights into dependability in the case of multiple faults. Therefore, this paper presents modeling patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance records. The extended FI framework supports the injection of multiple faults with exact control of the timing, locality, and values in fault-injection vectors. A multi-dimensional fault model is defined, including the probability of the occurrence of different sensor and actuator faults. Comprehensive experimental results provide insights into the system’s behavior for concrete example scenarios using patterns of multiple faults. The experimental results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault increased energy consumption by more than 70%.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/21/8180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22218180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Gaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; +2 AuthorsGaggero, Giovanni Battista; Caviglia, Roberto; Armellin, Alessandro; Rossi, Mansueto; Girdinio, Paola; Marchese, Mario;Distributed Energy Resources (DERs) are growing in importance Power Systems. Battery Electrical Storage Systems (BESS) represent fundamental tools in order to balance the unpredictable power production of some Renewable Energy Sources (RES). Nevertheless, BESS are usually remotely controlled by SCADA systems, so they are prone to cyberattacks. This paper analyzes the vulnerabilities of BESS and proposes an anomaly detection algorithm that, by observing the physical behavior of the system, aims to promptly detect dangerous working conditions by exploiting the capabilities of a particular neural network architecture called the autoencoder. The results show the performance of the proposed approach with respect to the traditional One Class Support Vector Machine algorithm.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/10/3933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22103933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammed F. Alsharekh; Shabana Habib; Deshinta Arrova Dewi; Waleed Albattah; Muhammad Islam; Saleh Albahli;Multistep power consumption forecasting is smart grid electricity management’s most decisive problem. Moreover, it is vital to develop operational strategies for electricity management systems in smart cities for commercial and residential users. However, an efficient electricity load forecasting model is required for accurate electric power management in an intelligent grid, leading to customer financial benefits. In this article, we develop an innovative framework for short-term electricity load forecasting, which includes two significant phases: data cleaning and a Residual Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM) architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep R-CNN architecture is developed in the second phase to extract essential features from the refined electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to learn the sequence information, and finally, fully connected layers are used for the forecasting. The proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively decreases the error rates compared to baseline models.
Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1424-8220/22/18/6913/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22186913&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, ItalyPublisher:MDPI AG Authors: Alessandro Andreadis; Giovanni Giambene; Riccardo Zambon;This paper deals with IoT devices deployed in remote areas without terrestrial Internet connectivity. We consider connecting IoT devices on the ground to the Internet through an aerial system based on an Unmanned Aerial Vehicle (UAV) for smart agriculture and environmental monitoring. The UAV flying over the remote area receives data from distributed IoT devices. The transmissions between the ground sensors and the UAV are carried out via LoRa. We have proposed a synchronization protocol for the opportunistic communication of LoRa IoT devices with a gateway onboard the UAV to save node battery life. Class A LoRa nodes on the ground transmit only when the UAV is expected to pass close to them; otherwise, they stay in the sleeping state most of the time. This paper provides a detailed description of the formulation of the synchronization protocol. The UAV’s flying dynamics have been considered for characterizing its speed and the time of visibility of each IoT sensor. Our model has allowed an analytical approach that can help to determine the best settings for LoRa transmissions. Finally, experiments have been carried out to assess the path loss attenuation, and a laboratory setup of the synchronization protocol has been implemented for the preliminary validation of our scheme.
Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/9/4481/pdfData sources: Multidisciplinary Digital Publishing InstituteUsiena air - Università di SienaArticle . 2023License: CC BYData sources: Usiena air - Università di SienaUniversità degli Studi di Siena: USiena airArticle . 2023Full-Text: https://hdl.handle.net/11365/1232074Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23094481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1424-8220/23/9/4481/pdfData sources: Multidisciplinary Digital Publishing InstituteUsiena air - Università di SienaArticle . 2023License: CC BYData sources: Usiena air - Università di SienaUniversità degli Studi di Siena: USiena airArticle . 2023Full-Text: https://hdl.handle.net/11365/1232074Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23094481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Junhyung Moon; Minsuk Oh; Soljee Kim; Kyoungwoo Lee; Junga Lee; Yoonkyung Song; Justin Y. Jeon;The limited availability of calorimetry systems for estimating human energy expenditure (EE) while conducting exercise has prompted the development of wearable sensors utilizing readily accessible methods. We designed an energy expenditure estimation method which considers the energy consumed during the exercise, as well as the excess post-exercise oxygen consumption (EPOC) using machine learning algorithms. Thirty-two healthy adults (mean age = 28.2 years; 11 females) participated in 20 min of aerobic exercise sessions (low intensity = 40% of maximal oxygen uptake [VO2 max], high intensity = 70% of VO2 max). The physical characteristics, exercise intensity, and the heart rate data monitored from the beginning of the exercise sessions to where the participants’ metabolic rate returned to an idle state were used in the EE estimation models. Our proposed estimation shows up to 0.976 correlation between estimated energy expenditure and ground truth (root mean square error: 0.624 kcal/min). In conclusion, our study introduces a highly accurate method for estimating human energy expenditure during exercise using wearable sensors and machine learning. The achieved correlation up to 0.976 with ground truth values underscores its potential for widespread use in fitness, healthcare, and sports performance monitoring.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23229235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu