Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • SDG [Beta]
    Clear
  • Language
    Clear
  • Source
    Clear
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 7. Clean energy
  • Chinese
  • Journal of Isotopes

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: WANG Fei;PAN Jianxiong;ZHOU Mingsheng;JIANG Dongjun;LI Junjie;

    Ethanol is a feasible medium for diffusion separation of carbon isotopes. In order to obtain the separation coefficient of gas diffusion separation of ethanol, the application of elemental analysis isotope ratio mass spectrometry (EA-IRMS) to measure the carbon isotope abundance in ethanol in gas diffusion separation experiment was studied. Through literature investigation, this study optimized the preparation process of ethanol samples, developed the method of EA-IRMS for the determination of carbon isotope abundance of ethanol, tested the stability, and realized the measurement of carbon isotope abundance of ethanol samples. Based on the separation experiment of gas diffusion method, the carbon isotope abundances of refined ethanol and lean ethanol in multiple separation experiments are obtained. The basic total separation coefficient of carbon isotopes by ethanol diffusion can be calculated by formula derivation. This study provides an analytical basis for the future experiment of diffusion separation of carbon isotopes with ethanol as medium.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Isotopes
    Article . 2022
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Isotopes
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: WANG Fei;PAN Jianxiong;ZHOU Mingsheng;JIANG Dongjun;LI Junjie;

    Ethanol is a feasible medium for diffusion separation of carbon isotopes. In order to obtain the separation coefficient of gas diffusion separation of ethanol, the application of elemental analysis isotope ratio mass spectrometry (EA-IRMS) to measure the carbon isotope abundance in ethanol in gas diffusion separation experiment was studied. Through literature investigation, this study optimized the preparation process of ethanol samples, developed the method of EA-IRMS for the determination of carbon isotope abundance of ethanol, tested the stability, and realized the measurement of carbon isotope abundance of ethanol samples. Based on the separation experiment of gas diffusion method, the carbon isotope abundances of refined ethanol and lean ethanol in multiple separation experiments are obtained. The basic total separation coefficient of carbon isotopes by ethanol diffusion can be calculated by formula derivation. This study provides an analytical basis for the future experiment of diffusion separation of carbon isotopes with ethanol as medium.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Isotopes
    Article . 2022
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Isotopes
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: LI Junjie;PAN Jianxiong;ZHOU Mingsheng;JIANG Dongjun;WANG Fei;

    As a marker for isotope tracing technology, carbon-13 is widely used and the market demand is on the rise. In order to explore the separation method of carbon-13 isotope, a gas diffusion separation experiment using ethanol as the processing gas was carried out, and a cascade calculation was carried out on the basis of the single-stage experiment. The results of the single-stage separation experiment show that the overall separation factor for unit mass difference of ethanol separation by gas diffusion can reach 1.008 9 under the existing experimental conditions. It is feasible to use ethanol as processing gas to separate carbon isotopes by gas diffusion method. Through the cascade calculation, it can be known that using natural ethanol as the feed, combined with the feasibility and economy of separation, after a square cascade or matched abundance ratio cascade separation, a heavy fraction with the carbon-13 isotope abundance greater than 25% can be obtained. If ethanol with a carbon-13 isotope abundance greater than 25% can be converted into a suitable form of carbon compound, it can be further separated to obtain a higher abundance of carbon-13 isotope.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Isotopes
    Article . 2022
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Isotopes
      Article . 2022
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: LI Junjie;PAN Jianxiong;ZHOU Mingsheng;JIANG Dongjun;WANG Fei;

    As a marker for isotope tracing technology, carbon-13 is widely used and the market demand is on the rise. In order to explore the separation method of carbon-13 isotope, a gas diffusion separation experiment using ethanol as the processing gas was carried out, and a cascade calculation was carried out on the basis of the single-stage experiment. The results of the single-stage separation experiment show that the overall separation factor for unit mass difference of ethanol separation by gas diffusion can reach 1.008 9 under the existing experimental conditions. It is feasible to use ethanol as processing gas to separate carbon isotopes by gas diffusion method. Through the cascade calculation, it can be known that using natural ethanol as the feed, combined with the feasibility and economy of separation, after a square cascade or matched abundance ratio cascade separation, a heavy fraction with the carbon-13 isotope abundance greater than 25% can be obtained. If ethanol with a carbon-13 isotope abundance greater than 25% can be converted into a suitable form of carbon compound, it can be further separated to obtain a higher abundance of carbon-13 isotope.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Isotopes
    Article . 2022
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Isotopesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Isotopes
      Article . 2022
      Data sources: DOAJ
      addClaim
Powered by OpenAIRE graph