- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Environmental Evidence
- Energy Research
- 12. Responsible consumption
- Environmental Evidence
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Netherlands, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Kasper Kok; Gillian Petrokofsky; Jake L. Snaddon; Anthony Waldron; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis; Wen Zhou; Jessica P. R. Thorn; Shonil A. Bhagwat;handle: 10568/76388
Abstract Background An extensive body of literature in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on sustainably meeting future food demand, by making farms more productive and resilient, and contributing to better nutrition and livelihoods of farmers. In Africa alone, some research has estimated a two-fold yield increase if food producers capitalize on new and existing knowledge from science and technology. Site-specific strategies adopted with the aim of improving ecosystem services may incorporate principles of multifunctional agriculture, sustainable intensification and conservation agriculture. However, a coherent synthesis and review of the evidence of these claims is largely absent, and the quality of much of this literature is questionable. Moreover, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Objectives This systematic map is stimulated by an interest to (1) collate evidence on the effectiveness of on-farm conservation land management for preserving and enhancing ecosystem services in agricultural landscapes, by drawing together the currently fragmented and multidisciplinary literature base, and (2) geographically map what indicators have been used to assess on-farm conservation land management. For both questions, we will focus on 74 low-income and developing countries, where much of the world’s agricultural expansion is occurring, yet 80% of arable land is already used and croplands are yielding well below their potential. Methods/Design To this end, reviewers will systematically search bibliographic databases for peer-reviewed research from Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 22 subject-specific or institutional websites. Boolean search operators will be used to create search strings where applicable. Ecosystem services included in the study are pollination services; pest-, carbon-, soil-, and water-regulation; nutrient cycling; medicinal and aromatic plants; fuel wood and cultural services. Outputs of the systematic map will include a database, technical report and an online interactive map, searchable by topic. The results of this map are expected to provide clarity about synergistic outcomes of conservation land management, which will help support local decision-making.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76388Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 71 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76388Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | What are the impacts of a...UKRI| What are the impacts of agricultural soil and crop management on greenhouse gas fluxes? - Informing post Brexit agricultural subsidy policyNicola Randall; James Thomas; Jessica J. Taylor; Alexandra M. Collins; Neal R. Haddaway; Neal R. Haddaway; Biljana Macura; Alyssa Gilbert; Steven J. Cooke;Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-019-0182-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-019-0182-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | What are the impacts of a...UKRI| What are the impacts of agricultural soil and crop management on greenhouse gas fluxes? - Informing post Brexit agricultural subsidy policyAuthors: Alexandra Mary Collins; Neal Robert Haddaway; James Thomas; Nicola Peniston Randall; +5 AuthorsAlexandra Mary Collins; Neal Robert Haddaway; James Thomas; Nicola Peniston Randall; Jessica Jean Taylor; Albana Berberi; Jessica Lauren Reid; Christopher Raymond Andrews; Steven James Cooke;Abstract Background Reducing the emissions of greenhouse gases (GHGs) is vital for mitigating climate change and meeting commitments to international agreements such as the COP 21 Paris Agreement of 2015. Agriculture is reported to account for approximately 11 percent of total global GHG emissions such that: the agricultural sector has an important role to play in meeting climate change mitigation objectives. However, there is currently little consensus on how farm management and interventions, along with interactions with in-field variability, such as soil type, affect the production and assimilation of GHGs in arable crop lands. Practical recommendations for farmers are often vague or generalised, and models (e.g. on the amount of nitrogen fertiliser applied) are used despite limited understanding of the influence of local conditions, such as the importance of soil type. Here, we report the findings of a systematic map of the evidence relating to the impact on GHG flux from the in-field management of arable land in temperate regions. Methods We searched for, collated and catalogued research relating to the effects of in-field arable farming practices in temperate systems on GHG emissions. Results from 6 bibliographic databases, a web-based search engine and organisational websites were combined with evidence from stakeholders. Duplicates were removed and the results were then screened for relevance at title and abstract, and full-text levels according to a predefined set of eligibility criteria (following consistency checking). Relevant studies were then coded and their meta-data extracted and used to populate a systematic map database describing each study’s settings, methods and measured outcomes. Results The mapping process identified 538 relevant studies from 351 articles. Nearly all of these (96%) were found from traditional research papers, with 42% from European countries and nearly half (203 studies) lasting for 12 months or less. Over half of all studies (55%) investigated multiple interventions with chemical fertiliser (n = 100), tillage (n = 70), and organic fertiliser (n = 30) the most frequently studied single intervention types. When combining individually studied and multiple interventions, the top three intervention types most frequently studied were: chemical fertiliser (n = 312); organic fertiliser (n = 176) and tillage (n = 158). Nitrous oxide was the most commonly studied outcome, with over double the number of studies compared to carbon dioxide, the next most studied outcome. Sandy loam and silty loam were the most commonly studied soils but there was a good distribution of studies across other types. However, studies predominately focused on humid sub-tropical (Cfa) and temperate oceanic (Cfb) climates, with hot summer Mediterranean (CSa) and warm summer Mediterranean (Csb) climate zones less represented. Conclusions The mapping process identified clusters of research for chemical and organic fertiliser especially in relation to nitrous oxide emissions and for both carbon dioxide and nitrous dioxide in relation to tillage. Therefore, there is potential for further synthesis for these interventions. The spread of research across soil textures and in the humid sub-tropical and temperate oceanic climates may enable further synthesis to provide tailored in-field advice for farmers and provide an evidence base to inform subsidies policy. However, smaller amounts of research relating to biochar, cover crops, crop rotation, and nitrogen inhibitors highlight gaps where further research would be beneficial.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00275-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00275-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Filipe Di Matteo; Filipe Di Matteo; Eileen Dyer Jarnholt; Eileen Dyer Jarnholt; Eileen Dyer Jarnholt; Idsert Jelsma; Idsert Jelsma; George C. Schoneveld; Pablo Pacheco; Frederico Brandão; Frederico Brandão;handle: 10568/94683
Background: As a result of rising global food and energy insecurity, investors are increasingly seeking new opportunities in tropical developing countries endowed with comparatively cheap and abundant land resources. Predominantly targeting the agriculture and forestry sectors, these investments could make valuable contributions to the economies of developing countries. However, with most investors opting for plantation-oriented business models, in the context of weak governance regimes within many host countries, many fear that these investments may instead exacerbate socio-economic vulnerabilities and processes of environmental degradation. Therefore, there is a need to explore alternative upstream business models that are more inclusive of the poor and are more aligned with emergent green growth objectives. This systematic map aims to contribute to this debate by cataloging empirical studies conducted on the sustainability of different upstream business models in the agriculture and forestry sector (e.g. involving the cultivation of raw materials). The mapping will offer an overview of the type and quantity of research conducted to date, remaining knowledge gaps, and areas warranting a systematic review. Methods: Searches will be conducted of both academic and grey literature by employing search strings that have been iteratively tested for comprehensiveness. Studies retrieved in the searches will be screened using pre-defined inclusion criteria and coded across a broad range of study characteristics. Inclusion criteria include, for example, type of business model employed, social, economic, and environmental impacts, and study design (e.g. generation of new empirical evidence). The outputs will be a database of included search results and a systematic map offering descriptive statistics and narrative assessment of the state of the evidence base in this topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-4-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-4-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Jia Yen Lai; Dyah Ita Mardiyaningsih; Faris Rahmadian; Nurfatin Hamzah;Abstract Background Smallholding plantations represent approximately 40% of the total palm oil plantation area globally. For any certifications, standards, and other instruments to achieve more ethical and sustainable palm oil supply chains, it is essential to improve smallholder engagement in the schemes. A large body of research has built up our understanding of the challenges of engaging smallholders in sustainability initiatives in various sites and countries. A broad systematic understanding of how different types of sustainability initiatives can support or restrict smallholders from access to market and different resources and under which economic and social conditions are not yet developed. This systematic map aims to identify, map, and describe the body of evidence that exists on the positive and negative impacts of sustainability initiatives on smallholder engagement in palm oil practices in Southeast Asia. The findings are expected to inform policies and practices on smallholder engagement in sustainable palm oil supply chains and identify evidence gaps where future primary studies and evidence syntheses can contribute. Methods We will develop a guiding framework of interventions through other works on supply chain instruments. We will then construct a test library of 39 items through field expert consultations and snowballing using literature search algorithms. The search will cover four publication databases, five bibliographic databases, and 13 topical and organizational websites. We will search for existing evidence syntheses and primary research studies in Southeast Asia countries published between 2008 and 2021. This systematic map will only include English language articles due to our limited capacity. We will screen the search results at the title/abstract and the full-text levels. Numbers of included/excluded items and reasons for exclusion will be noted and visualized via a ROSES flow diagram. We will develop a data extraction form for assessing data useful for reporting current trends of smallholder engagement in sustainable palm oil initiatives. A random sample of 20% of the included articles will be assessed for validity using Joanne Briggs Institute’s critical appraisal checklist. We will then organize and summarize the data according to the defined PICO.
Environmental Eviden... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00283-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert Environmental Eviden... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00283-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 South Africa, SwedenPublisher:Springer Science and Business Media LLC Filippa Ek; Neal R. Haddaway; Neal R. Haddaway; Mikołaj Piniewski; Marta Księżniak; Dag Lorick; Biljana Macura; Agnieszka Karczmarczyk; Jennifer McConville; Solveig L. Johannesdottir; Paweł Osuch;handle: 10210/461727
Abstract Background Eutrophication of the Baltic Sea, and many other water bodies, is partly the result of point-source emissions of nutrients and carbon from wastewater. At the same time, nitrogen and phosphorus planetary boundaries have been breached. There is a need for more efficient resource management, including the recovery and reuse of nutrients and carbon in waste. The aim of this paper is to collate evidence on ecotechnologies intended for use in the wastewater sector globally to facilitate the recovery or reuse of carbon and/or nutrients. Methods Searches were performed on literature published between 2013 and 2017 and in 5 bibliographic databases, 1 search engine, and 38 specialist websites. Database searches were performed in English. Searches in specialist websites were also performed in Finnish, Polish and Swedish. There was no geographical limitation. Screening was conducted at title and abstract level, and on full texts. Apart from bibliographical information, we extracted information on ecotechnology type, intervention, details of the recovery or reuse, the type of wastewater stream to which the ecotechnology is applied, the study location, type and design. Prior to screening and coding, we conducted consistency checks amongst reviewers. We generated a searchable database of coded studies. Findings were synthesised narratively and visualised in a geographical information system (i.e. an evidence atlas). We identified a series of knowledge gaps and clusters that warrant further research. Results The search resulted in 4024 records, out of which 413 articles were retained after the screening process. In addition, 35 pre-screened studies from the specialist website searches were added. Together, these 448 articles contained 474 individual studies of 28 types of ecotechnologies. A combination of ecotechnologies (16.7%), followed by microalgae cultivation (14.1%) were the most frequent ecotechnologies in the evidence base. Ecotechnologies for recovery composed 72.6% of the evidence base. The most common wastewater streams for recovery were mixed wastewater and sludge (73.8%). There was a relative lack of studies on recovery from source-separated wastewater. The most common type of recovery was energy (27.3%), followed by simultaneous recovery of nitrogen and phosphorus (22.1%). Reuse of recovered substances was described in 22.8% of the studies. The most common type of reuse was of nitrogen and phosphorus (57.4%), followed by joint reuse of organic carbon, nitrogen and phosphorus (35.2%). Reuse ecotechnologies were mostly focused on the use of wastewater for irrigation or reuse of biosolids, and not on the nutrients that had been extracted through e.g. precipitation of struvite. In 22 studies both recovery and reuse were described. In total, 60 different study countries were reported in the evidence base, and the most common study location was China. Conclusions We found substantial evidence for the recovery and reuse of nutrients and carbon from wastewater sources. The relative abundance of studies where substances are recovered compared to studies where they are reused, suggests a knowledge gap on reuse of recovered nutrients and carbon. The majority of studies on reuse were on irrigation with treated wastewater or reuse of biosolids, and not on reuse of extracted nutrients such as struvite.
Environmental Eviden... arrow_drop_down The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00207-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00207-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Netherlands, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Kasper Kok; Gillian Petrokofsky; Jake L. Snaddon; Anthony Waldron; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis; Wen Zhou; Jessica P. R. Thorn; Shonil A. Bhagwat;handle: 10568/76388
Abstract Background An extensive body of literature in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on sustainably meeting future food demand, by making farms more productive and resilient, and contributing to better nutrition and livelihoods of farmers. In Africa alone, some research has estimated a two-fold yield increase if food producers capitalize on new and existing knowledge from science and technology. Site-specific strategies adopted with the aim of improving ecosystem services may incorporate principles of multifunctional agriculture, sustainable intensification and conservation agriculture. However, a coherent synthesis and review of the evidence of these claims is largely absent, and the quality of much of this literature is questionable. Moreover, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Objectives This systematic map is stimulated by an interest to (1) collate evidence on the effectiveness of on-farm conservation land management for preserving and enhancing ecosystem services in agricultural landscapes, by drawing together the currently fragmented and multidisciplinary literature base, and (2) geographically map what indicators have been used to assess on-farm conservation land management. For both questions, we will focus on 74 low-income and developing countries, where much of the world’s agricultural expansion is occurring, yet 80% of arable land is already used and croplands are yielding well below their potential. Methods/Design To this end, reviewers will systematically search bibliographic databases for peer-reviewed research from Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 22 subject-specific or institutional websites. Boolean search operators will be used to create search strings where applicable. Ecosystem services included in the study are pollination services; pest-, carbon-, soil-, and water-regulation; nutrient cycling; medicinal and aromatic plants; fuel wood and cultural services. Outputs of the systematic map will include a database, technical report and an online interactive map, searchable by topic. The results of this map are expected to provide clarity about synergistic outcomes of conservation land management, which will help support local decision-making.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76388Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 71 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76388Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-015-0036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | What are the impacts of a...UKRI| What are the impacts of agricultural soil and crop management on greenhouse gas fluxes? - Informing post Brexit agricultural subsidy policyNicola Randall; James Thomas; Jessica J. Taylor; Alexandra M. Collins; Neal R. Haddaway; Neal R. Haddaway; Biljana Macura; Alyssa Gilbert; Steven J. Cooke;Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-019-0182-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-019-0182-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:UKRI | What are the impacts of a...UKRI| What are the impacts of agricultural soil and crop management on greenhouse gas fluxes? - Informing post Brexit agricultural subsidy policyAuthors: Alexandra Mary Collins; Neal Robert Haddaway; James Thomas; Nicola Peniston Randall; +5 AuthorsAlexandra Mary Collins; Neal Robert Haddaway; James Thomas; Nicola Peniston Randall; Jessica Jean Taylor; Albana Berberi; Jessica Lauren Reid; Christopher Raymond Andrews; Steven James Cooke;Abstract Background Reducing the emissions of greenhouse gases (GHGs) is vital for mitigating climate change and meeting commitments to international agreements such as the COP 21 Paris Agreement of 2015. Agriculture is reported to account for approximately 11 percent of total global GHG emissions such that: the agricultural sector has an important role to play in meeting climate change mitigation objectives. However, there is currently little consensus on how farm management and interventions, along with interactions with in-field variability, such as soil type, affect the production and assimilation of GHGs in arable crop lands. Practical recommendations for farmers are often vague or generalised, and models (e.g. on the amount of nitrogen fertiliser applied) are used despite limited understanding of the influence of local conditions, such as the importance of soil type. Here, we report the findings of a systematic map of the evidence relating to the impact on GHG flux from the in-field management of arable land in temperate regions. Methods We searched for, collated and catalogued research relating to the effects of in-field arable farming practices in temperate systems on GHG emissions. Results from 6 bibliographic databases, a web-based search engine and organisational websites were combined with evidence from stakeholders. Duplicates were removed and the results were then screened for relevance at title and abstract, and full-text levels according to a predefined set of eligibility criteria (following consistency checking). Relevant studies were then coded and their meta-data extracted and used to populate a systematic map database describing each study’s settings, methods and measured outcomes. Results The mapping process identified 538 relevant studies from 351 articles. Nearly all of these (96%) were found from traditional research papers, with 42% from European countries and nearly half (203 studies) lasting for 12 months or less. Over half of all studies (55%) investigated multiple interventions with chemical fertiliser (n = 100), tillage (n = 70), and organic fertiliser (n = 30) the most frequently studied single intervention types. When combining individually studied and multiple interventions, the top three intervention types most frequently studied were: chemical fertiliser (n = 312); organic fertiliser (n = 176) and tillage (n = 158). Nitrous oxide was the most commonly studied outcome, with over double the number of studies compared to carbon dioxide, the next most studied outcome. Sandy loam and silty loam were the most commonly studied soils but there was a good distribution of studies across other types. However, studies predominately focused on humid sub-tropical (Cfa) and temperate oceanic (Cfb) climates, with hot summer Mediterranean (CSa) and warm summer Mediterranean (Csb) climate zones less represented. Conclusions The mapping process identified clusters of research for chemical and organic fertiliser especially in relation to nitrous oxide emissions and for both carbon dioxide and nitrous dioxide in relation to tillage. Therefore, there is potential for further synthesis for these interventions. The spread of research across soil textures and in the humid sub-tropical and temperate oceanic climates may enable further synthesis to provide tailored in-field advice for farmers and provide an evidence base to inform subsidies policy. However, smaller amounts of research relating to biochar, cover crops, crop rotation, and nitrogen inhibitors highlight gaps where further research would be beneficial.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00275-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00275-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Springer Science and Business Media LLC Filipe Di Matteo; Filipe Di Matteo; Eileen Dyer Jarnholt; Eileen Dyer Jarnholt; Eileen Dyer Jarnholt; Idsert Jelsma; Idsert Jelsma; George C. Schoneveld; Pablo Pacheco; Frederico Brandão; Frederico Brandão;handle: 10568/94683
Background: As a result of rising global food and energy insecurity, investors are increasingly seeking new opportunities in tropical developing countries endowed with comparatively cheap and abundant land resources. Predominantly targeting the agriculture and forestry sectors, these investments could make valuable contributions to the economies of developing countries. However, with most investors opting for plantation-oriented business models, in the context of weak governance regimes within many host countries, many fear that these investments may instead exacerbate socio-economic vulnerabilities and processes of environmental degradation. Therefore, there is a need to explore alternative upstream business models that are more inclusive of the poor and are more aligned with emergent green growth objectives. This systematic map aims to contribute to this debate by cataloging empirical studies conducted on the sustainability of different upstream business models in the agriculture and forestry sector (e.g. involving the cultivation of raw materials). The mapping will offer an overview of the type and quantity of research conducted to date, remaining knowledge gaps, and areas warranting a systematic review. Methods: Searches will be conducted of both academic and grey literature by employing search strings that have been iteratively tested for comprehensiveness. Studies retrieved in the searches will be screened using pre-defined inclusion criteria and coded across a broad range of study characteristics. Inclusion criteria include, for example, type of business model employed, social, economic, and environmental impacts, and study design (e.g. generation of new empirical evidence). The outputs will be a database of included search results and a systematic map offering descriptive statistics and narrative assessment of the state of the evidence base in this topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-4-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-4-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Jia Yen Lai; Dyah Ita Mardiyaningsih; Faris Rahmadian; Nurfatin Hamzah;Abstract Background Smallholding plantations represent approximately 40% of the total palm oil plantation area globally. For any certifications, standards, and other instruments to achieve more ethical and sustainable palm oil supply chains, it is essential to improve smallholder engagement in the schemes. A large body of research has built up our understanding of the challenges of engaging smallholders in sustainability initiatives in various sites and countries. A broad systematic understanding of how different types of sustainability initiatives can support or restrict smallholders from access to market and different resources and under which economic and social conditions are not yet developed. This systematic map aims to identify, map, and describe the body of evidence that exists on the positive and negative impacts of sustainability initiatives on smallholder engagement in palm oil practices in Southeast Asia. The findings are expected to inform policies and practices on smallholder engagement in sustainable palm oil supply chains and identify evidence gaps where future primary studies and evidence syntheses can contribute. Methods We will develop a guiding framework of interventions through other works on supply chain instruments. We will then construct a test library of 39 items through field expert consultations and snowballing using literature search algorithms. The search will cover four publication databases, five bibliographic databases, and 13 topical and organizational websites. We will search for existing evidence syntheses and primary research studies in Southeast Asia countries published between 2008 and 2021. This systematic map will only include English language articles due to our limited capacity. We will screen the search results at the title/abstract and the full-text levels. Numbers of included/excluded items and reasons for exclusion will be noted and visualized via a ROSES flow diagram. We will develop a data extraction form for assessing data useful for reporting current trends of smallholder engagement in sustainable palm oil initiatives. A random sample of 20% of the included articles will be assessed for validity using Joanne Briggs Institute’s critical appraisal checklist. We will then organize and summarize the data according to the defined PICO.
Environmental Eviden... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00283-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert Environmental Eviden... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00283-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 South Africa, SwedenPublisher:Springer Science and Business Media LLC Filippa Ek; Neal R. Haddaway; Neal R. Haddaway; Mikołaj Piniewski; Marta Księżniak; Dag Lorick; Biljana Macura; Agnieszka Karczmarczyk; Jennifer McConville; Solveig L. Johannesdottir; Paweł Osuch;handle: 10210/461727
Abstract Background Eutrophication of the Baltic Sea, and many other water bodies, is partly the result of point-source emissions of nutrients and carbon from wastewater. At the same time, nitrogen and phosphorus planetary boundaries have been breached. There is a need for more efficient resource management, including the recovery and reuse of nutrients and carbon in waste. The aim of this paper is to collate evidence on ecotechnologies intended for use in the wastewater sector globally to facilitate the recovery or reuse of carbon and/or nutrients. Methods Searches were performed on literature published between 2013 and 2017 and in 5 bibliographic databases, 1 search engine, and 38 specialist websites. Database searches were performed in English. Searches in specialist websites were also performed in Finnish, Polish and Swedish. There was no geographical limitation. Screening was conducted at title and abstract level, and on full texts. Apart from bibliographical information, we extracted information on ecotechnology type, intervention, details of the recovery or reuse, the type of wastewater stream to which the ecotechnology is applied, the study location, type and design. Prior to screening and coding, we conducted consistency checks amongst reviewers. We generated a searchable database of coded studies. Findings were synthesised narratively and visualised in a geographical information system (i.e. an evidence atlas). We identified a series of knowledge gaps and clusters that warrant further research. Results The search resulted in 4024 records, out of which 413 articles were retained after the screening process. In addition, 35 pre-screened studies from the specialist website searches were added. Together, these 448 articles contained 474 individual studies of 28 types of ecotechnologies. A combination of ecotechnologies (16.7%), followed by microalgae cultivation (14.1%) were the most frequent ecotechnologies in the evidence base. Ecotechnologies for recovery composed 72.6% of the evidence base. The most common wastewater streams for recovery were mixed wastewater and sludge (73.8%). There was a relative lack of studies on recovery from source-separated wastewater. The most common type of recovery was energy (27.3%), followed by simultaneous recovery of nitrogen and phosphorus (22.1%). Reuse of recovered substances was described in 22.8% of the studies. The most common type of reuse was of nitrogen and phosphorus (57.4%), followed by joint reuse of organic carbon, nitrogen and phosphorus (35.2%). Reuse ecotechnologies were mostly focused on the use of wastewater for irrigation or reuse of biosolids, and not on the nutrients that had been extracted through e.g. precipitation of struvite. In 22 studies both recovery and reuse were described. In total, 60 different study countries were reported in the evidence base, and the most common study location was China. Conclusions We found substantial evidence for the recovery and reuse of nutrients and carbon from wastewater sources. The relative abundance of studies where substances are recovered compared to studies where they are reused, suggests a knowledge gap on reuse of recovered nutrients and carbon. The majority of studies on reuse were on irrigation with treated wastewater or reuse of biosolids, and not on reuse of extracted nutrients such as struvite.
Environmental Eviden... arrow_drop_down The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00207-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00207-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu