- home
- Advanced Search
Filters
Clear All- Energy Research
- 7. Clean energy
- English
- Applied Energy
- Energy Research
- 7. Clean energy
- English
- Applied Energy
description Publicationkeyboard_double_arrow_right Report , Journal 2020Publisher:Karlsruher Institut für Technologie (KIT) Authors: Maximilian Schücking; Patrick Jochem;The possibility of electric vehicles to technically replace internal combustion engine vehicles and to deliver economic benefits mainly depends on the battery and the charging infrastructure as well as on annual mileage (utilizing the lower variable costs of electric vehicles). Current studies on electric vehicles’ total cost of ownership often neglect two important factors that influence the investment decision and operational costs: firstly, the trade-off between battery and charging capacity; secondly the uncertainty in energy consumption. This paper proposes a two-stage stochastic program that minimizes the total cost of ownership of a commercial electric vehicle under uncertain energy consumption and available charging times induced by mobility patterns and outside temperature. The optimization program is solved by sample average approximation based on mobility and temperature scenarios. A hidden Markov model is introduced to predict mobility demand scenarios. Three scenario reduction heuristics are applied to reduce computational effort while keeping a high-quality approximation. The proposed framework is tested in a case study of the home nursing service. The results show the large influence of the uncertain mobility patterns on the optimal solution. In the case study, the total cost of ownership can be reduced by up to 3.9% by including the trade-off between battery and charging capacity. The introduction of variable energy prices can lower energy costs by 31.6% but does not influence the investment decision in this case study. Overall, this study provides valuable insights for real applications to determine the techno-economic optimal electric vehicle and charging infrastructure configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5445/ir/1000126399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5445/ir/1000126399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report , Journal 2020Publisher:Karlsruher Institut für Technologie (KIT) Authors: Maximilian Schücking; Patrick Jochem;The possibility of electric vehicles to technically replace internal combustion engine vehicles and to deliver economic benefits mainly depends on the battery and the charging infrastructure as well as on annual mileage (utilizing the lower variable costs of electric vehicles). Current studies on electric vehicles’ total cost of ownership often neglect two important factors that influence the investment decision and operational costs: firstly, the trade-off between battery and charging capacity; secondly the uncertainty in energy consumption. This paper proposes a two-stage stochastic program that minimizes the total cost of ownership of a commercial electric vehicle under uncertain energy consumption and available charging times induced by mobility patterns and outside temperature. The optimization program is solved by sample average approximation based on mobility and temperature scenarios. A hidden Markov model is introduced to predict mobility demand scenarios. Three scenario reduction heuristics are applied to reduce computational effort while keeping a high-quality approximation. The proposed framework is tested in a case study of the home nursing service. The results show the large influence of the uncertain mobility patterns on the optimal solution. In the case study, the total cost of ownership can be reduced by up to 3.9% by including the trade-off between battery and charging capacity. The introduction of variable energy prices can lower energy costs by 31.6% but does not influence the investment decision in this case study. Overall, this study provides valuable insights for real applications to determine the techno-economic optimal electric vehicle and charging infrastructure configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5445/ir/1000126399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5445/ir/1000126399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu