- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
- 15. Life on land
- Applied Energy
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
- 15. Life on land
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Kristen S. Cetin;
Youngme Seo; Jasmeet Singh; Jongho Im;Kristen S. Cetin
Kristen S. Cetin in OpenAIREAbstract For 118 million residential housing units in the U.S., there is currently a gap between the potential energy savings that can be achieved through the use of existing energy efficiency technologies, and the actual level of energy savings realized, particularly for the 37% of housing units that are considered residential rental properties. Additional quantifiable benefits are needed beyond energy savings to help further motivate residential property owners to invest in energy efficiency upgrades. This research focuses on assessing the adoption of energy efficient upgrades in U.S. residential housing and the impact on rental prices. Ten U.S. cities are chosen for analysis; these cities vary in size across multiple climate zones, and represent a diverse set of housing market conditions. Data was collected for over 159,000 rental property listings, their characteristics, and their energy efficiency measures listed in rental housing postings across each city. Following an extensive data quality control process, over thirty different types energy efficient features were identified. The level of adoption was determined for each city, ranging from 5.3% to 21.6%. Efficient lighting and appliances were among the most common, with many features doubling as energy efficient and other desirable aesthetic or comfort improvements. Then using propensity score matching and conditional mean comparison methods, the relative impact on rent charged in each city was calculated, which ranged from a 6% to 14.1% increase in rent for properties with energy efficient features, demonstrating a positive economic impact of these features, particularly for property owners. This was further subdivided into five types of energy efficiency upgrade and three housing types. Single family homes generally demanded higher premiums with energy efficient features, however there was not a consistent pattern across the types of efficient upgrades. The results of this work demonstrate that investment in energy efficient technologies has quantifiable benefits for rental property owners in the U.S. beyond just energy savings. This methodology and results can also be used in other cities and by property owners, utility companies, or others, ultimately encouraging further investment and positive economic impact in residential energy efficiency and in turn improving energy and resource conservation in the building sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Seung Ho Hong; Musharraf Alam; Min Wei; Min Wei;Interconnectivity and interoperability are very important features in the development of integrated energy management systems for industrial facilities. A simple and common strategy for exchanging energy-related information among the entities in a facility is currently lacking. To this end, the purpose of this study is to present an IoT-based communication framework with a common information model to facilitate the development of a demand response (DR) energy management system for industrial customers. Additionally, we developed and implemented an IoT-based energy-management platform based on a common information model and open communication protocols, which takes advantage of integrated energy supply networks to deploy DR energy management in an industrial facility. The experimental results of this study demonstrate that the proposed platform can not only improve the interconnectivity of the entities in industrial energy management systems but also reduce the energy costs of industrial facilities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.11.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.11.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abstract Accurate estimation of the remaining useful life of lithium-ion batteries is critically important for electronic devices. In the existing literature, the widely applied model-based approaches for remaining useful battery life estimation are limited by the complexity of the electrochemical modeling required. In addition, data-driven approaches for remaining useful battery life estimation commonly define unreliable sliding window sizes empirically and the prediction accuracy of these approaches needs to be improved. To address the above issues, use of a hybrid neural network with the false nearest neighbors method is proposed in this paper. First, the false nearest neighbors method is used to calculate the sliding window size required for prediction. Second, a hybrid neural network that combines the advantages of a convolutional neural network with those of long short-term memory is designed for model training and prediction. Remaining useful life prediction experiments for batteries with various rated capacities are performed to verify the effectiveness of the proposed approach, and the results demonstrate that the proposed approach offers wide generality and reduced errors when compared with the other state-of-the-art methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu262 citations 262 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors:Sally Shahzad;
John Brennan; Dimitris Theodossopoulos; Ben Hughes; +1 AuthorsSally Shahzad
Sally Shahzad in OpenAIRESally Shahzad;
John Brennan; Dimitris Theodossopoulos; Ben Hughes;Sally Shahzad
Sally Shahzad in OpenAIREJohn Kaiser Calautit;
John Kaiser Calautit
John Kaiser Calautit in OpenAIREAbstract Two office layouts with high and low levels of thermal control were compared, respectively traditional cellular and contemporary open plan offices. The traditional Norwegian practice provided every user with control over a window, blinds, door, and the ability to adjust heating and cooling. Occupants were expected to control their thermal environment to find their own comfort, while air conditioning was operating in the background to ensure the indoor air quality. In contrast, in the British open plan office, limited thermal control was provided through openable windows and blinds only for occupants seated around the perimeter of the building. Centrally operated displacement ventilation was the main thermal control system. Users’ perception of thermal environment was recorded through survey questionnaires, empirical building performance through environmental measurements and thermal control through semi-structured interviews. The Norwegian office had 35% higher user satisfaction and 20% higher user comfort compared to the British open plan office. However, the energy consumption in the British practice was within the benchmark and much lower than the Norwegian office. Overall, a balance between thermal comfort and energy efficiency is required, as either extreme poses difficulties for the other.
Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Research at Derby (University of Derby)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1983Publisher:Elsevier BV Abstract Specification by central government of the heating levels which are to be maintained in British school buildings has recently been altered. This paper is concerned with examining the nature of changes that have been made by comparing present requirements with their counterparts during the preceding one hundred years. Attention is focused on the apparently contradictory implications of these changes for those charged with responsibility for maintaining heating levels in school buildings while, at the same time, conserving fuel. It is suggested that the new statutory requirements present those who are responsible with a duty which may, in practical terms, prove difficult or costly to discharge. Although discussion is specifically restricted to British school buildings, issues are raised which are pertinent to attempts to integrate regulation of heating with control of fuel consumption in other types of non-domestic buildings both in Britain and abroad.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(83)90056-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Seongyong Eom; Young Hoon Rhie; Gyungmin Choi; Yonmo Sung;Seongyool Ahn;
Cheor Eon Moon; Duck Jool Kim;Seongyool Ahn
Seongyool Ahn in OpenAIREAbstract Wood biomass char was used in a direct carbon fuel cell (DCFC) as an alternative fuel. This has many advantages because the DCFC is a high-efficiency system and wood biomass is a carbon-free and regenerative material. Several analytical techniques were employed to analyze the characteristics of three fuels, their effects on the cell’s performance, and the electrochemical reactions between the fuels and the electrolyte in the system. The morphological and textural characteristics of biomass char were similar to those of two types of coal used as fuels for a DCFC system in spite of the char’s significantly lower carbon content. A practical evaluation of the fuels used in the DCFC system was conducted, and when using the biomass char, the maximum power density was 60–70% that of the corresponding value for coal under the same conditions. The performance of the biomass char fuel was improved by stirring. The possibility of its practical application was also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Tingting Liu; Zhengang Liu; Nana Peng; Chao Gai;Abstract Hydrothermal treatment (HT) is one of the efficient approaches for upgrading municipal solid waste (MSW). In the present study, emission characteristics of polycyclic aromatic hydrocarbons (PAHs) from hydrothermally treated municipal solid waste (H-MSW) combustion alone and H-MSW/coal co-combustion were investigated at different temperatures. The results showed that for all fuel combustion, the majority of PAHs were 3- or 4-ring PAHs. In addition, flue gas had the highest yields of PAHs followed by fly ash and bottom ash, while the ring number of dominated PAHs in fly ash was higher than those in flue gas and bottom ash. Compared to MSW, H-MSW combustion generated less PAHs at the value of 1131.95–7649.24 μg/g. The blending of H-MSW and coal reduced total PAH emissions and positive interactions were observed between H-MSW and coal during co-combustion. The toxicity equivalent quantity (TEQ) values of the PAHs from combustion were in the order MSW > H-MSW > H-MSW/coal, which was consistent with the total PAH emissions. The present study illustrated that significant reduction of PAH emissions and toxicity from combustion could be achieved by HT and the blending of H-MSW and coal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu