- home
- Advanced Search
- Energy Research
- 2021-2025
- Hyper Article en Ligne
- Energy Research
- 2021-2025
- Hyper Article en Ligne
description Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Auricle Technologies, Pvt., Ltd. Authors: Ayad, Soheyb; Kazar, Okba; Benharkat, Nabila-Aicha; Terrissa, Labib-Sadek;The web services discovery process in mobile adhoc networks is considered as a very difficult challenge due to the continuous change in the topology of the network and also the lack of a fixed central directory for publishing web services. Several approaches have been proposed which are based on either keywords or identifiers representing the service to be searched or by using a specific scenario of discovery. All of those proposed solutions try to respect the constraints of ad hoc networks such as energy, bandwidth, throughput ... etc. In this paper we present our new proposed model for measuring the cost of the overall energy consumption in ad hoc networks depending on the web services discovery protocols. We also present a new optimized web services discovery protocol in MANET based on cross_layer routing techniques with the dissemination in the routing process at the same time the semantic web services information and a Discovery_Diameter parameter that we have proposed to limit the area of discovery in the network. Finally, we present simulation results of our defined approach showing a significant optimization of the energy consumption level and the average throughput.
International Journa... arrow_drop_down International Journal of Communication Networks and Information Security (IJCNIS)Article . 2022 . Peer-reviewedData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17762/ijcnis.v8i1.1698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Communication Networks and Information Security (IJCNIS)Article . 2022 . Peer-reviewedData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17762/ijcnis.v8i1.1698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021Publisher:IEEE Authors: El Osta, Rola; Chetto, Maryline; El Ghor, Hussein;Most of wireless sensors are dynamically changing and execute two types of tasks: hard deadline periodic ones and aperiodic ones with no deadline. The emergence of energy harvesting technologies makes it possible to design self-powered sensors through environmental energy. Nevertheless, classical scheduling techniques need to be reconceived so as to take into account the fluctuating energy source and energy consumptions of tasks. Hence, we firstly describe the called TB-H and TB*-H aperiodic task servers which are extensions of the famous Total Bandwidth server. We show how TB-H and TB*-H permit to provide short response times for the aperiodic tasks by computing adequate virtual deadlines taking into account both time and energy constraints. Our second contribution lies in extensive simulations to bring to light the effectiveness of these two novel Bandwidth based servers in comparison to basic background approaches.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2021https://doi.org/10.1109/isee51...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isee51682.2021.9418746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2021https://doi.org/10.1109/isee51...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isee51682.2021.9418746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2024 FrancePublisher:UK Zhende Publishing Limited Company B. Tabbache; M. Benbouzid; Bordj El-Bahri; Hamza Alloui; K. Nounou; Khoudir Marouani;doi: 10.24084/repqj13.300
This paper presents a control scheme of a power generation system based on a dual star squirrel-cage induction machine operating as an induction generator. The operating mode based on an excitation control scheme is chosen to ensure a controlled magnitude and frequency of the generator output voltage. Some preliminary simulation and experimental test results, carried out on a prototype of dual star induction machine operating as generator and supplying various loads under different conditions, are presented and discussed.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2015Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj13.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2015Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj13.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Li, Haiqin; Touzé, Cyril; Pelat, Adrien; Gautier, François;The Acoustic Black Hole (ABH) effect refers to a special vibration damping technique adapted to thin-walled structures such as beams or plates. It usually consists of a local decrease of the structure thickness profile, associated to a thin viscoelastic coating placed in the area of minimum thickness. It has been shown that such structural design acts as an efficient vibration damper in the high frequency range, but not at low frequencies. This paper investigates how different types of vibration absorbers, linear and nonlinear, added to the primary system can improve the low frequency performance of a beam ABH termination. In particular, the conjugated effects of the Acoustic Black Hole effect and a Tuned Mass Damper (TMD), a Nonlinear Energy Sink (NES), a bi-stable NES (BNES), and a vibro-impact ABH (VI-ABH) are investigated. Forced response to random excitation are computed in the time domain using a modal approach combined with an energy conserving numerical scheme. Frequency indicators are defined to characterize and compare the performance of all solutions. The simulation results clearly show that all the proposed methods are able to damp efficiently the flexural vibrations in a broadband manner. The optimal tuning of each proposed solution is then investigated through a thorough parametric study, showing how to optimize the efficiency of each solution. In particular, TMD and VI-ABH show a slight dependence on vibration amplitude, while the performance of NES and BNES have a peak of efficiency for moderate amplitudes.
Hyper Article en Lig... arrow_drop_down International Journal of Non-Linear MechanicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijnonlinmec.2020.103558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down International Journal of Non-Linear MechanicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijnonlinmec.2020.103558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Friedrich Kessler; Alejandro Pérez-Rodríguez; Alejandro Pérez-Rodríguez; Shan-Ting Zhang; +7 AuthorsFriedrich Kessler; Alejandro Pérez-Rodríguez; Alejandro Pérez-Rodríguez; Shan-Ting Zhang; Roland Wuerz; Maxim Guc; Thibaud Hildebrandt; Victor Izquierdo-Roca; Wolfram Hempel; Oliver Salomon; Nathanaelle Schneider;Abstract An effective encapsulation solution for flexible CIGS is urgently needed to ensure a competitive market entry of the technology. In this work, we demonstrate the feasibility to effectively encapsulate module-level (10 × 10 cm2) CIGS/glass solar cells by employing a thin Al2O3 barrier layer grown by atomic layer deposition (ALD). As determined by a direct methodology, 10 nm ALD-Al2O3 is proved to be sufficient in preventing electrical degradation of the Al:ZnO (AZO) window layer upon exposure to damp heat test (DHT) and equally effective to encapsulate 10 × 10 cm2 CIGS/glass mini-modules by efficient blockage of moisture ingress. CIGS mini-modules encapsulated by ALD-Al2O3 barrier layer retain an average of 80% and 72% of initial efficiency after 1000 and 2000 h of DHT, respectively. Whereas unencapsulated modules drop to an average of 67% (1000 h DHT) and 22% (2000 h DHT) of initial efficiency. Thanks to the presence of ALD-Al2O3 barrier layer, less electrical degradation occurred in AZO window layer and P3 interconnection; also less shunting paths appeared – both led to a lower FF drop in encapsulated CIGS mini-modules. However, an issue of Na migration out of the CIGS layer is observed, which negatively impacts the module stability during DHT.
Hyper Article en Lig... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03102361Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03102361Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 29 Apr 2021 United Kingdom, France, Germany, Finland, Germany, United KingdomPublisher:IOP Publishing Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Evelina Trutnevyte; Oreane Y. Edelenbosch; Johannes Emmerling; Mathijs Harmsen; +16 AuthorsEvelina Trutnevyte; Oreane Y. Edelenbosch; Johannes Emmerling; Mathijs Harmsen; Mathijs Harmsen; Panagiotis Fragkos; J. Lefèvre; Will McDowall; Jean-Francois Mercure; Jean-Francois Mercure; Fabian Wagner; Nicolas Bauer; M. Caspani; Céline Guivarch; Roberto Schaeffer; T. Le Gallic; Ilkka Keppo; Ilkka Keppo; Isabela Butnar; Marian Leimbach;AbstractIntegrated assessment models (IAMs) have emerged as key tools for building and assessing long term climate mitigation scenarios. Due to their central role in the recent IPCC assessments, and international climate policy analyses more generally, and the high uncertainties related to future projections, IAMs have been critically assessed by scholars from different fields receiving various critiques ranging from adequacy of their methods to how their results are used and communicated. Although IAMs are conceptually diverse and evolved in very different directions, they tend to be criticised under the umbrella of ‘IAMs’. Here we first briefly summarise the IAM landscape and how models differ from each other. We then proceed to discuss six prominent critiques emerging from the recent literature, reflect and respond to them in the light of IAM diversity and ongoing work and suggest ways forward. The six critiques relate to (a) representation of heterogeneous actors in the models, (b) modelling of technology diffusion and dynamics, (c) representation of capital markets, (d) energy-economy feedbacks, (e) policy scenarios, and (f) interpretation and use of model results.
Hyper Article en Lig... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03142411Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe5d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 21 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03142411Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe5d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Centre de Developpement des Energie Renouvelables Authors: Mekhtoub, Saïd; Ibtiouen, Rachid; Bacha, Seddik;Le générateur asynchrone est de plus en plus utilisé dans les systèmes de production éoliens. Le générateur asynchrone à double alimentation est le mieux adapté pour les systèmes éoliens comparativement au générateur autonome qui sert à alimenter des endroits isolés. Dans notre étude, nous avons présenté le modèle du générateur en tenant compte de l’effet de saturation dans le système d’axes d-q. Nous avons appliqué ce modèle dans le cas d’une coupure du réseau électrique afin d’analyser la répercussion sur la dynamique des courants dans le générateur et ce pour les deux types de générateurs autonome et à double alimentation. Dans le cas du générateur autonome, des résultats expérimentaux sont présentés et comparés à ceux issus de la simulation.
Revue des Énergies R... arrow_drop_down Revue des Énergies RenouvelablesArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54966/jreen.v12i2.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revue des Énergies R... arrow_drop_down Revue des Énergies RenouvelablesArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54966/jreen.v12i2.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, France, United StatesPublisher:Elsevier BV Rasmus Fensholt; Mengjia Wang; Mengjia Wang; Christophe Moisy; Lei Fan; Philippe Ciais; Martin Brandt; Amen Al-Yaari; Frédéric Frappart; Dara Entekhabi; Alexandra G. Konings; Jean-Pierre Wigneron; Xiangzhuo Liu; Xiaojun Li;handle: 1721.1/132958
Abstract The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave remote sensing systems, is related to the intensity of microwave extinction effects within the vegetation canopy layer. This index is only marginally impacted by effects from atmosphere, clouds and sun illumination, and thus increasingly used for ecological applications at large scales. Newly released VOD products show different abilities in monitoring vegetation features, depending on the algorithm used and the satellite frequency. VOD is increasingly sensitive to the upper vegetation layer as the frequency increases (from L-, C- to X-band), offering different capacities to monitor seasonal changes of the leafy and/or woody vegetation components, vegetation water status and aboveground biomass. This study evaluated nine recently developed/reprocessed VOD products from the AMSR2, SMOS and SMAP space-borne instruments for monitoring structural vegetation features related to phenology, height and aboveground biomass. For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-VOD products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products in regions that are not densely vegetated, where they showed higher temporal correlation values with optical vegetation indices (VIs). However, LPDR X-VOD time series failed to detect changes in VOD after rainfall events whereas most other VOD products could do so, and overall daily variations are less pronounced in LPDR X-VOD. Results show that the reprocessed VODCA C- and X-VOD have almost comparable performance and VODCA C-VOD correlates better with VIs than other C-VOD products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC, show a higher temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as savannas (R ~ 0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive to the non-green vegetation components (trunks and branches) than higher frequency products, they are well-correlated with aboveground biomass: (R ~ 0.91) across space between predicted and observed values for both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest canopy height, results at L-band are not systematically better than C- and X-VOD products. This revealed specific VOD retrieval issues for some ecosystems, e.g., boreal regions. It is expected that these findings can contribute to algorithm refinements, product enhancements and further developing the use of VOD for monitoring above-ground vegetation biomass, vegetation dynamics and phenology.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2020.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2020.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ERANETMED, ANR | CAPRYSSESEC| ERANETMED ,ANR| CAPRYSSESChakchak, Sawssen; Hidouri, Ammar; Zaidaoui, Hajar; Chrigui, Mouldi; Boushaki, Toufik;This paper reports an experimental and numerical investigation of a methane-air diffusion flame stabilized over a swirler coaxial burner. The burner configuration consists of two tubes with a swirler placed in the annular part. The passage of the oxidant is ensured by the annular tube; however, the fuel is injected by the central jet through eight holes across the oxidizer flow. The experiments were conducted in a combustion chamber of 25 kW power and 48 × 48 × 100 cm3 dimensions. Numerical flow fields were compared with stereoscopic particle image velocimetry (stereo-PIV) fields for non-reacting and reacting cases. The turbulence was captured using the Reynolds averaged Navier-Stokes (RANS) approach, associated with the eddy dissipation combustion model (EDM) to resolve the turbulence/chemistry interaction. The simulations were performed using the Fluent CFD (Computational Fluid Dynamic) code. Comparison of the computed results and the experimental data showed that the RANS results were capable of predicting the swirling flow. The effect of the inlet velocity ratio on dynamic flow behavior, temperature distribution, species mass fraction and the pollutant emission were numerically studied. The results showed that the radial injection of fuel induces a partial premixing between reactants, which affects the flame behavior, in particular the flame stabilization. The increase in the velocity ratio (Rv) improves the turbulence and subsequently ameliorates the mixing. CO emissions caused by the temperature variation are also decreased due to the improvement of the inlet velocity ratio.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids6040159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids6040159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Moussa Kafal; Nicolas Gregis; Jaume Benoit; Nicolas Ravot;Electromagnetic time reversal (EMTR) has recently emerged as a promising technique applied for locating faults in power networks. It directly transposes the idea of focusing energy back to its source introduced in original time-reversal (TR) methods. Accordingly, we present in this paper, FasTR, a method based on the tenets of TR, that estimates the fault location by employing optimization based algorithms for fetching the highest peak amplitude with maximum coherence in space and time . However, it uses an alternative approach for executing the cumbersome TR post-processing, thanks to a simplified analytical model capable of evaluating the voltage (or current) at any position and any instant of the tested network resulting from the back-injection of the recorded time-revered signals. FasTR is shown to accurately locate a fault in a complex network with just a basic knowledge of its topology in no more than a couple tens of seconds. More importantly is its ability to locate multiple faults in non-homogeneous networks. The performance of the proposed method is validated by numerical simulations as well as an experimental setup by making reference to a reduced-scale coaxial cable network where real faults are hardware-emulated.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2020.3000301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2020.3000301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Auricle Technologies, Pvt., Ltd. Authors: Ayad, Soheyb; Kazar, Okba; Benharkat, Nabila-Aicha; Terrissa, Labib-Sadek;The web services discovery process in mobile adhoc networks is considered as a very difficult challenge due to the continuous change in the topology of the network and also the lack of a fixed central directory for publishing web services. Several approaches have been proposed which are based on either keywords or identifiers representing the service to be searched or by using a specific scenario of discovery. All of those proposed solutions try to respect the constraints of ad hoc networks such as energy, bandwidth, throughput ... etc. In this paper we present our new proposed model for measuring the cost of the overall energy consumption in ad hoc networks depending on the web services discovery protocols. We also present a new optimized web services discovery protocol in MANET based on cross_layer routing techniques with the dissemination in the routing process at the same time the semantic web services information and a Discovery_Diameter parameter that we have proposed to limit the area of discovery in the network. Finally, we present simulation results of our defined approach showing a significant optimization of the energy consumption level and the average throughput.
International Journa... arrow_drop_down International Journal of Communication Networks and Information Security (IJCNIS)Article . 2022 . Peer-reviewedData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17762/ijcnis.v8i1.1698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Communication Networks and Information Security (IJCNIS)Article . 2022 . Peer-reviewedData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17762/ijcnis.v8i1.1698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021Publisher:IEEE Authors: El Osta, Rola; Chetto, Maryline; El Ghor, Hussein;Most of wireless sensors are dynamically changing and execute two types of tasks: hard deadline periodic ones and aperiodic ones with no deadline. The emergence of energy harvesting technologies makes it possible to design self-powered sensors through environmental energy. Nevertheless, classical scheduling techniques need to be reconceived so as to take into account the fluctuating energy source and energy consumptions of tasks. Hence, we firstly describe the called TB-H and TB*-H aperiodic task servers which are extensions of the famous Total Bandwidth server. We show how TB-H and TB*-H permit to provide short response times for the aperiodic tasks by computing adequate virtual deadlines taking into account both time and energy constraints. Our second contribution lies in extensive simulations to bring to light the effectiveness of these two novel Bandwidth based servers in comparison to basic background approaches.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2021https://doi.org/10.1109/isee51...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isee51682.2021.9418746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2021https://doi.org/10.1109/isee51...Conference object . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/isee51682.2021.9418746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2024 FrancePublisher:UK Zhende Publishing Limited Company B. Tabbache; M. Benbouzid; Bordj El-Bahri; Hamza Alloui; K. Nounou; Khoudir Marouani;doi: 10.24084/repqj13.300
This paper presents a control scheme of a power generation system based on a dual star squirrel-cage induction machine operating as an induction generator. The operating mode based on an excitation control scheme is chosen to ensure a controlled magnitude and frequency of the generator output voltage. Some preliminary simulation and experimental test results, carried out on a prototype of dual star induction machine operating as generator and supplying various loads under different conditions, are presented and discussed.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2015Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj13.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2015Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24084/repqj13.300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Li, Haiqin; Touzé, Cyril; Pelat, Adrien; Gautier, François;The Acoustic Black Hole (ABH) effect refers to a special vibration damping technique adapted to thin-walled structures such as beams or plates. It usually consists of a local decrease of the structure thickness profile, associated to a thin viscoelastic coating placed in the area of minimum thickness. It has been shown that such structural design acts as an efficient vibration damper in the high frequency range, but not at low frequencies. This paper investigates how different types of vibration absorbers, linear and nonlinear, added to the primary system can improve the low frequency performance of a beam ABH termination. In particular, the conjugated effects of the Acoustic Black Hole effect and a Tuned Mass Damper (TMD), a Nonlinear Energy Sink (NES), a bi-stable NES (BNES), and a vibro-impact ABH (VI-ABH) are investigated. Forced response to random excitation are computed in the time domain using a modal approach combined with an energy conserving numerical scheme. Frequency indicators are defined to characterize and compare the performance of all solutions. The simulation results clearly show that all the proposed methods are able to damp efficiently the flexural vibrations in a broadband manner. The optimal tuning of each proposed solution is then investigated through a thorough parametric study, showing how to optimize the efficiency of each solution. In particular, TMD and VI-ABH show a slight dependence on vibration amplitude, while the performance of NES and BNES have a peak of efficiency for moderate amplitudes.
Hyper Article en Lig... arrow_drop_down International Journal of Non-Linear MechanicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijnonlinmec.2020.103558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down International Journal of Non-Linear MechanicsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijnonlinmec.2020.103558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Authors: Friedrich Kessler; Alejandro Pérez-Rodríguez; Alejandro Pérez-Rodríguez; Shan-Ting Zhang; +7 AuthorsFriedrich Kessler; Alejandro Pérez-Rodríguez; Alejandro Pérez-Rodríguez; Shan-Ting Zhang; Roland Wuerz; Maxim Guc; Thibaud Hildebrandt; Victor Izquierdo-Roca; Wolfram Hempel; Oliver Salomon; Nathanaelle Schneider;Abstract An effective encapsulation solution for flexible CIGS is urgently needed to ensure a competitive market entry of the technology. In this work, we demonstrate the feasibility to effectively encapsulate module-level (10 × 10 cm2) CIGS/glass solar cells by employing a thin Al2O3 barrier layer grown by atomic layer deposition (ALD). As determined by a direct methodology, 10 nm ALD-Al2O3 is proved to be sufficient in preventing electrical degradation of the Al:ZnO (AZO) window layer upon exposure to damp heat test (DHT) and equally effective to encapsulate 10 × 10 cm2 CIGS/glass mini-modules by efficient blockage of moisture ingress. CIGS mini-modules encapsulated by ALD-Al2O3 barrier layer retain an average of 80% and 72% of initial efficiency after 1000 and 2000 h of DHT, respectively. Whereas unencapsulated modules drop to an average of 67% (1000 h DHT) and 22% (2000 h DHT) of initial efficiency. Thanks to the presence of ALD-Al2O3 barrier layer, less electrical degradation occurred in AZO window layer and P3 interconnection; also less shunting paths appeared – both led to a lower FF drop in encapsulated CIGS mini-modules. However, an issue of Na migration out of the CIGS layer is observed, which negatively impacts the module stability during DHT.
Hyper Article en Lig... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03102361Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03102361Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2020.110914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 29 Apr 2021 United Kingdom, France, Germany, Finland, Germany, United KingdomPublisher:IOP Publishing Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Evelina Trutnevyte; Oreane Y. Edelenbosch; Johannes Emmerling; Mathijs Harmsen; +16 AuthorsEvelina Trutnevyte; Oreane Y. Edelenbosch; Johannes Emmerling; Mathijs Harmsen; Mathijs Harmsen; Panagiotis Fragkos; J. Lefèvre; Will McDowall; Jean-Francois Mercure; Jean-Francois Mercure; Fabian Wagner; Nicolas Bauer; M. Caspani; Céline Guivarch; Roberto Schaeffer; T. Le Gallic; Ilkka Keppo; Ilkka Keppo; Isabela Butnar; Marian Leimbach;AbstractIntegrated assessment models (IAMs) have emerged as key tools for building and assessing long term climate mitigation scenarios. Due to their central role in the recent IPCC assessments, and international climate policy analyses more generally, and the high uncertainties related to future projections, IAMs have been critically assessed by scholars from different fields receiving various critiques ranging from adequacy of their methods to how their results are used and communicated. Although IAMs are conceptually diverse and evolved in very different directions, they tend to be criticised under the umbrella of ‘IAMs’. Here we first briefly summarise the IAM landscape and how models differ from each other. We then proceed to discuss six prominent critiques emerging from the recent literature, reflect and respond to them in the light of IAM diversity and ongoing work and suggest ways forward. The six critiques relate to (a) representation of heterogeneous actors in the models, (b) modelling of technology diffusion and dynamics, (c) representation of capital markets, (d) energy-economy feedbacks, (e) policy scenarios, and (f) interpretation and use of model results.
Hyper Article en Lig... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03142411Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe5d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 21 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.science/hal-03142411Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe5d8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Centre de Developpement des Energie Renouvelables Authors: Mekhtoub, Saïd; Ibtiouen, Rachid; Bacha, Seddik;Le générateur asynchrone est de plus en plus utilisé dans les systèmes de production éoliens. Le générateur asynchrone à double alimentation est le mieux adapté pour les systèmes éoliens comparativement au générateur autonome qui sert à alimenter des endroits isolés. Dans notre étude, nous avons présenté le modèle du générateur en tenant compte de l’effet de saturation dans le système d’axes d-q. Nous avons appliqué ce modèle dans le cas d’une coupure du réseau électrique afin d’analyser la répercussion sur la dynamique des courants dans le générateur et ce pour les deux types de générateurs autonome et à double alimentation. Dans le cas du générateur autonome, des résultats expérimentaux sont présentés et comparés à ceux issus de la simulation.
Revue des Énergies R... arrow_drop_down Revue des Énergies RenouvelablesArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54966/jreen.v12i2.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revue des Énergies R... arrow_drop_down Revue des Énergies RenouvelablesArticle . 2023 . Peer-reviewedLicense: CC BY SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.54966/jreen.v12i2.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, France, United StatesPublisher:Elsevier BV Rasmus Fensholt; Mengjia Wang; Mengjia Wang; Christophe Moisy; Lei Fan; Philippe Ciais; Martin Brandt; Amen Al-Yaari; Frédéric Frappart; Dara Entekhabi; Alexandra G. Konings; Jean-Pierre Wigneron; Xiangzhuo Liu; Xiaojun Li;handle: 1721.1/132958
Abstract The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave remote sensing systems, is related to the intensity of microwave extinction effects within the vegetation canopy layer. This index is only marginally impacted by effects from atmosphere, clouds and sun illumination, and thus increasingly used for ecological applications at large scales. Newly released VOD products show different abilities in monitoring vegetation features, depending on the algorithm used and the satellite frequency. VOD is increasingly sensitive to the upper vegetation layer as the frequency increases (from L-, C- to X-band), offering different capacities to monitor seasonal changes of the leafy and/or woody vegetation components, vegetation water status and aboveground biomass. This study evaluated nine recently developed/reprocessed VOD products from the AMSR2, SMOS and SMAP space-borne instruments for monitoring structural vegetation features related to phenology, height and aboveground biomass. For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-VOD products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products in regions that are not densely vegetated, where they showed higher temporal correlation values with optical vegetation indices (VIs). However, LPDR X-VOD time series failed to detect changes in VOD after rainfall events whereas most other VOD products could do so, and overall daily variations are less pronounced in LPDR X-VOD. Results show that the reprocessed VODCA C- and X-VOD have almost comparable performance and VODCA C-VOD correlates better with VIs than other C-VOD products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC, show a higher temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as savannas (R ~ 0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive to the non-green vegetation components (trunks and branches) than higher frequency products, they are well-correlated with aboveground biomass: (R ~ 0.91) across space between predicted and observed values for both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest canopy height, results at L-band are not systematically better than C- and X-VOD products. This revealed specific VOD retrieval issues for some ecosystems, e.g., boreal regions. It is expected that these findings can contribute to algorithm refinements, product enhancements and further developing the use of VOD for monitoring above-ground vegetation biomass, vegetation dynamics and phenology.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2020.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.inrae.fr/hal-03121281Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2020.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ERANETMED, ANR | CAPRYSSESEC| ERANETMED ,ANR| CAPRYSSESChakchak, Sawssen; Hidouri, Ammar; Zaidaoui, Hajar; Chrigui, Mouldi; Boushaki, Toufik;This paper reports an experimental and numerical investigation of a methane-air diffusion flame stabilized over a swirler coaxial burner. The burner configuration consists of two tubes with a swirler placed in the annular part. The passage of the oxidant is ensured by the annular tube; however, the fuel is injected by the central jet through eight holes across the oxidizer flow. The experiments were conducted in a combustion chamber of 25 kW power and 48 × 48 × 100 cm3 dimensions. Numerical flow fields were compared with stereoscopic particle image velocimetry (stereo-PIV) fields for non-reacting and reacting cases. The turbulence was captured using the Reynolds averaged Navier-Stokes (RANS) approach, associated with the eddy dissipation combustion model (EDM) to resolve the turbulence/chemistry interaction. The simulations were performed using the Fluent CFD (Computational Fluid Dynamic) code. Comparison of the computed results and the experimental data showed that the RANS results were capable of predicting the swirling flow. The effect of the inlet velocity ratio on dynamic flow behavior, temperature distribution, species mass fraction and the pollutant emission were numerically studied. The results showed that the radial injection of fuel induces a partial premixing between reactants, which affects the flame behavior, in particular the flame stabilization. The increase in the velocity ratio (Rv) improves the turbulence and subsequently ameliorates the mixing. CO emissions caused by the temperature variation are also decreased due to the improvement of the inlet velocity ratio.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids6040159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fluids6040159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Moussa Kafal; Nicolas Gregis; Jaume Benoit; Nicolas Ravot;Electromagnetic time reversal (EMTR) has recently emerged as a promising technique applied for locating faults in power networks. It directly transposes the idea of focusing energy back to its source introduced in original time-reversal (TR) methods. Accordingly, we present in this paper, FasTR, a method based on the tenets of TR, that estimates the fault location by employing optimization based algorithms for fetching the highest peak amplitude with maximum coherence in space and time . However, it uses an alternative approach for executing the cumbersome TR post-processing, thanks to a simplified analytical model capable of evaluating the voltage (or current) at any position and any instant of the tested network resulting from the back-injection of the recorded time-revered signals. FasTR is shown to accurately locate a fault in a complex network with just a basic knowledge of its topology in no more than a couple tens of seconds. More importantly is its ability to locate multiple faults in non-homogeneous networks. The performance of the proposed method is validated by numerical simulations as well as an experimental setup by making reference to a reduced-scale coaxial cable network where real faults are hardware-emulated.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2020.3000301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2020.3000301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu