
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dataset for PhD thesis "Nudging at Scale: Uncovering Conversational AI Potentials to Facilitate Pro-environmental Behaviour Spillover"
[This dataset contains all data used for Studies 2 (qualitative), 3 (quantitative survey) and 4 (longitudinal) in my PhD research.]<br>Thesis abstract:This thesis explores the potential positive impact of artificial intelligence (AI) technology on sustainability in and outside of the tourism industry through four studies. Study 1 introduced the AI4GoodTourism framework, emphasising the need for sustainability inclusion</em> and tourist involvement</em> to achieve a successful sustainability transition. Five themes were identified through a systematic review: intelligent automation to enhance tourist experience, preserve heritage, promote quality of life, measure tourist experience, and preserve the environment. The latter theme was the least explored scholarly topic. Study 2 conceptualised a conversational AI chatbot to promote pro-environmental behaviour spillover among tourists visiting the Gili Islands, Indonesia. A theoretical model was proposed, highlighting factors influencing chatbot usage and spillover effects. Study 3 identified relationships between factors from Study 2, revealing that factors such as performance expectancy, timing, </em>and credibility</em> significantly influenced people’s intention to use the proposed chatbot technology. A significant relationship was established between people’s intentions to use the chatbot and environmentally friendly transport. Scenario-based experiments showed that using the chatbot with educational information on sustainability was sufficient to trigger behaviour change. Study 4 explored the underlying mechanism of pro-environmental behaviour spillover through human-chatbot interactions using flashback nudging. A longitudinal experiment involving the Gili tourists demonstrated that flashback nudging delivered through chatbot technology strengthened their environmental self-identity, leading to significant differences in self-reported pro-environmental behaviour between treatment and control groups. In conclusion, the thesis demonstrates that AI technology, designed with high sustainability inclusion, can positively impact sustainability through tourists’ marginal contributions. The proposed AI4GoodTourism framework and the conceptualised chatbot technology, especially with flashback nudging, show potential for facilitating pro-environmental behaviour spillovers among tourists. All four studies in this thesis highlight the importance of prioritising sustainability in AI innovations for the tourism industry, offering insights for future AI development and adoption to support the global sustainability agenda.
- University of Surrey United Kingdom
- University of Central Florida United States
FOS: Economics and business, Sustainability, artificial intelligence, Tourism
FOS: Economics and business, Sustainability, artificial intelligence, Tourism
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
