Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mendeley Dataarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mendeley Data
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mendeley Data
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
B2FIND
Dataset . 2020
Data sources: B2FIND
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accelerometer Data for Energy Harvesting During Walking Estimation

Authors: Beach, C (via Mendeley Data);

Accelerometer Data for Energy Harvesting During Walking Estimation

Abstract

Accelerometer data supporting Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Harvesting at the Foot, this dataset contains accelerometer data from participants walking on a treadmill at a variety of speeds with sensors on the wrist, hip, ankle and foot. If using this data, please cite: C. Beach, A. J. Casson, "Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Harvesting at the Foot," IEEE Access, 2020 (doi: doi.org/10.1109/ACCESS.2020.3037952) Analysis code for this paper is available at https://github.com/CASSON-LAB/kinetic_energy_harvesting This repository includes both the raw data collected by the Axivity AX3 sensors (the raw CWA files and the resampled data in CSV format) and versions of the data that has been trimmed into multiple records corresponding to each speed of the treadmill (in pickled format). Note there is no participant P1. Accessing the raw data: The folders P2 – P13 contain the untrimmed data from the sensors. Sample rate: 100 Hz, units: g Participants were instructed to walk on a treadmill (LifeSpan TR1200i) as close as possible to how they would normally walk, while the speed of the treadmill was controlled by the experimenter. The treadmill was started at 2.4 km/h and the speed increased every 60 s by 0.1 km/h until the treadmill reached 4.3 km/h. Prior to recording each sensor went under a synchronisation procedure where all the sensors were flipped on their z-axis, causing a transition from -1g to +1g. The times of this synchronisation and the time for starting the treadmill is detailed in metadata.xlsx Files ending in .cwa are in Continuous Wave Accelerometer format (a binary format) which can be processed with OmGUI software from Axivity. Files ending in .csv are these files are processed cwa files in a text format, files ending in .resampled.csv have been resampled to 100 Hz using OmGUI. These resampled files account for the fact that the AX3 sensors sample at close to 100 Hz with significant sampling jitter by resampling the data to make the sampling rate exactly 100 Hz. It is recommended to work with the sampled files. 21629: Left wrist 21704: Right wrist 31447: Left hip 32610: Right hip 32784: Left ankle 32798: Right ankle 32816: Left foot 32973: Right foot Accessing the trimmed data: The trimmed data can be accessed by downloading the .pkl files, which are suitable to be imported directly into Python. Each of these can be imported by running the following commands in Python: import pickle import numpy as np pkl_file = open('P2.pkl', 'rb') P2 = pickle.load(pkl_file) The files cached_indexes.h5, cached_data.h5 and cadence_list.csv are required for use with the analysis code used in the paper and available at https://github.com/CASSON-LAB/kinetic_energy_harvesting

Keywords

Accelerometer, Wearable Sensor, Energy Harvesting, Other, Interdisciplinary sciences, Walking, Gait

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research