

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Global patterns and drivers of herbivorous eriophyoid mite species diversity
Aim: Environmental drivers and host richness play key roles in affecting herbivore diversity. However, the relative effects of these factors and their effects on lineages characterized by high host specificity are not well known. In this study, we explored the extent to which contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants determine the species richness and endemism patterns of herbivorous eriophyoid mites. Location: Global. Taxon: Eriophyoid mites (Acari: Eriophyoidea). Methods: We compiled a dataset comprising 4,278 eriophyoid mite species from 22,973 occurrence sites based on a comprehensive search of the published literature and the Global Biodiversity Information Facility (GBIF) as a basis for predicting their global distribution patterns. We measured the association of environmental variables and host plant richness with species richness and endemism of eriophyoid mites through multiple regression analyses using a simultaneous autoregressive (SAR) model, an ordinary least squares (OLS) model, and a random forest model. We examined the direct and indirect effects of these environmental variables and the host plant richness on eriophyoid mite diversity using structural equation models (SEMs). Results: The species richness and endemism patterns of eriophyoid mites are concentrated in temperate regions. Contemporary climate, Quaternary climate change, habitat heterogeneity, and host plants all significantly affected eriophyoid mite richness, while Quaternary climate change, habitat heterogeneity, and host plants contributed to the eriophyoid mite endemism. Abiotic factors indirectly influenced the species richness and endemism of eriophyoid mites, via biotic factors—host plants. Main conclusions: The species richness and endemism of eriophyoid mites peak in temperate regions, opposite to the patterns of plants and some other organisms. Complex interactions among biotic and abiotic factors shape the current eriophyoid mite species diversity.
- Nanjing Agricultural University China (People's Republic of)
- Nanjing Agricultural University China (People's Republic of)
Speciation, specificity, the Last Glacial Maximum, Biodiversity, climate change, refugia, speciation, endemism, Climate change, environmental drivers, biodiversity
Speciation, specificity, the Last Glacial Maximum, Biodiversity, climate change, refugia, speciation, endemism, Climate change, environmental drivers, biodiversity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 35 download downloads 5 - 35views5downloads
Data source Views Downloads ZENODO 35 5


