Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2021
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2021
License: CC 0
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus

Authors: Ivimey-Cook, Edward; Piani, Claudio; Hung, Wei-Tse; Berg, Elena;

Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus

Abstract

# Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus [https://doi.org/10.5061/dryad.f1vhhmgz7](https://doi.org/10.5061/dryad.f1vhhmgz7) The data contained in these two data files (bodymass.csv and lifehistory.csv) contain data on body mass, development time, lifetime reproductive success, and age-specific reproduction of two populations of *Callosobruchus maculatus* that evolved under fluctuating or constant thermal regimes and were subsequently assayed under fluctuating or thermal regimes. ## Description of the data and file structure bodymass.csv contains information on: * Pop: Population (either USA or LEIC). * Treatment: Note that C = Constant Regime Constant Environment; I = Fluctuating Regime Fluctuating Environment; CIA = Constant Regime Fluctuating Environment; ICA = Fluctuating Regime Constant Environment. The transformation for this occurs in the code. * Rep: Replicate number. * Sex: Sex of individual (M or F). * Day: Always 22. * VCMass: Chamber mass (g). * VCBeet.Mass: Chamber w/ beetle (g). * Beet.Mass: Beetle mass (g). lifehistory.csv contains information on: * Pop: Population (either USA or LEIC). * Treat: Treatment; note that C = Constant Regime Constant Environment; I = Fluctuating Regime Fluctuating Environment; CIA = Constant Regime Fluctuating Environment; ICA = Fluctuating Regime Constant Environment. The transformation for this occurs in the code. * Rep: Replicate. * Pair.Date: Date paired. * VC: Chamber ID. * DayEgg: Egg day. * DateEgg: Date of first egg lay. * DateMeasure: Date of measurement for offspring. * DT: Development Time. * Males/Female/Total: Number of offspring that are Male/Female/Combined Total. * Comments: Comments made during data collection. ## Code/Software Code used to run the analysis and produce the graphs is located on GitHub via https://github.com/EIvimeyCook/Fluctuating\_Beetles or via Zenodo with the DOI, https://zenodo.org/doi/10.5281/zenodo.10118422.

Climate change is associated with the increase in both mean and variability of thermal conditions. Therefore, the use of more realistic fluctuating thermal regimes is the most appropriate laboratory method for predicting population responses to thermal heterogeneity. However, the long- and short-term implications of evolving under such conditions are not well understood. Here, we examined differences in key life history traits among populations of seed beetles (Callosobruchus maculatus) that evolved under either constant control conditions or in an environment with fluctuating daily temperatures. Specifically, individuals from two distinct genetic backgrounds were kept for 19 generations at one of two temperatures, a constant temperature (T=29°C) or a fluctuating daily cycle (Tmean=33°C, Tmax=40°C, and Tmin=26°C), and were assayed either in their evolved environment or in the other environment. We found that beetles that evolved in fluctuating environments but were then switched to constant 29°C conditions had far greater lifetime reproductive success compared to beetles that were kept in their evolved environments. This increase in reproductive success suggests that beetles raised in fluctuating environments may have evolved greater thermal breadth than control condition beetles. In addition, the degree of sexual dimorphism in body size and development varied as a function of genetic background, evolved thermal environment, and current temperature conditions. These results highlight not only the value of incorporating diel fluctuations into climate research but also suggest that populations that experience variability in temperature may be better able to respond to both short- and long-term changes in environmental conditions.

Keywords

Fluctuating temperatures, thermal adaptation, FOS: Biological sciences, Climate change, Callosobruchus maculatus, thermal breadth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 16
  • 47
    views
    16
    downloads
    Data sourceViewsDownloads
    DRYAD81
    ZENODO3915
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
47
16