

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data from: Broad-scale patterns of the Afro-Palearctic landbird migration
Data from: Broad-scale patterns of the Afro-Palearctic landbird migration
Aim: Animal migration strategies balance trade-offs between mortality and reproduction in seasonal environments. Knowledge of broad-scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here we present a flyway-scale assessment of the spatial structure and seasonal dynamics of the Afro-Palearctic bird migration system and explore how phenology of the environment guides long-distance migration. Location: Europe and Africa. Time period: 2009–2017. Major taxa studied: Birds. Methods: We compiled an individual-based dataset comprising 23 passerine and near-passerine species of 55 European breeding populations where a total of 564 individuals were tracked migrating between Europe and sub-Saharan Africa. In addition, we used remote sensed observations on primary productivity (NDVI) to estimate the timing of vegetation green-up in spring and senescence in autumn across Europe. First, we described how individual breeding and non-breeding sites and the migratory flyways link geographically. Second, we examined how migration timing along the two major Afro-Palearctic flyways is tuned with vegetation phenology en route and at the breeding sites. Results: While we found the longitudes of individual breeding and non-breeding sites to be strongly positively related, the latitudes of breeding and non-breeding sites were negatively related. In autumn, timing of migration was similar along the Western and the Eastern flyways and happened ahead of the autumnal senescence of vegetation. In spring, migration timing was approximately two weeks later along the Eastern flyway than on the Western flyway which coincided with the later spring green-up in Eastern Europe. Main Conclusions: Migration of the Afro-Palearctic landbirds follows a longitudinally parallel leap-frog migration pattern where migrants track vegetation green-up in spring and depart before vegetation senescence in autumn. However, the ongoing global change have the potential to disrupt this spatiotemporal synchronization between migration timing and spring green-up with variable effects on different migrant populations.
- Swiss Ornithological Institute Switzerland
- Palacký University, Olomouc Czech Republic
- Uppsala University Sweden
- University of Aveiro Portugal
- Swiss Ornithological Institute Switzerland
long-distance migrant, spring green-up, migration speed, geolocator, continentality
long-distance migrant, spring green-up, migration speed, geolocator, continentality
7 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2020IsSupplementTo
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 3 download downloads 1 - 3views1downloads
Data source Views Downloads DRYAD 3 1


