Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2023
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland

Authors: Liu, Yijing; Wang, Peiyan; Elberling, Bo; Westergaard-Nielsen, Andreas;

Data from: Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland

Abstract

To quantify the seasonal transition dates, we used NDVI derived from Sentinel-2 MultiSpectral Instrument (Level-1C) images during 2016–2020 based on Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2). We performed an atmospheric correction (Yin et al., 2019) on the images before calculating NDVI. The months from May to October were set as the study period each year. The quality control process includes 3 steps: (i) the cloud was masked according to the QA60 band; (ii) images were removed if the number of pixels with NDVI values outside the range of -1–1 exceeds 30% of the total pixels while extracting the median value of each date; (iii) NDVI outliers resulting from cloud mask errors (Coluzzi et al., 2018) and sporadic snow were deleted pixel by pixel. NDVI outliers mentioned here appear as a sudden drop to almost zero in the growing season and do not form a sequence in this study (Komisarenko et al., 2022). To identify outliers, we iterated through every two consecutive NDVI values in the time series and calculated the difference between the second and first values for each pixel every year. We defined anomalous NDVI differences as points outside of the percentiles threshold [10 90], and if the NDVI difference is positive, then the first NDVI value used to calculate the difference will be the outlier, otherwise, the second one will be the outlier. Finally, 215 images were used to reflect seasonal transition dates in all 5 study periods of 2016–2020 after the quality control. Each image was resampled with 32 m spatial resolution to match the resolution of the ArcticDEM data and SnowModel outputs. To detect seasonal transition dates, we used a double sigmoid model to fit the NDVI changes on time series, and points where the curvature changes most rapidly on the fitted curve, appear at the beginning, middle, and end of each season (Klosterman et al., 2014). The applicability of this phenology method in the Arctic has been demonstrated (Ma et al., 2022; Westergaard-Nielsen et al., 2013; Westergaard-Nielsen et al., 2017). We focused on 3 seasonal transition dates, i.e., SOS, NDVImax day, and EOF. The NDVI values for some pixels are still below zero in spring and summer due to topographical shadow. We, therefore, set a quality control rule before calculating seasonal transition dates for each pixel, i.e., if the number of days with positive NDVI values from June to September is less than 60% of the total number of observed days, the pixel will not be considered for subsequent calculations. As verification of fitted dates, the seasonal transition dates in dry heaths and corresponding time-lapse photos acquired from the snow fence area are shown in Fig. 2. Snow cover extent is greatly reduced and vegetation is exposed with lower NDVI values on the SOS. All visible vegetation is green on the NDVImax day. On EOF, snow cover distributes partly, and NDVI decreases to a value close to zero.

# Data from: Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland The dataset includes all original images used in this study to extract seasonal transition dates and corresponding results. ## Description of the data and file structure Datasets included: (1) The spatial distribution of NDVI values for this study region (168 rows and 166 columns). Each file is named in the form of '' year-month-day''. For example, a file named "2016-05-02'' represents the data for 2nd, May of 2016. The normal NDVI values in each file range from -1 to 1, and NaN represents no valid value. The folder named 'unique_date_NDVI' refers to the spatial distribution of NDVI for all available dates, directly acquired from satellite images. The folder named 'unique_date_NDVI_rm_outlier' refers to the spatial distribution of NDVI after quality correction for each date using the described method. (2) The extracted phenology indicators for each pixel in this study region. Five tables named 'Phe_pixel_XXXX.xlsx' include the extracted seasonal transition dates during 2016–2020, pixel by pixel. There are 9 columns in each table, they are row number and column number (used to describe the specific location of pixel), year, start of spring, middle of spring, end of spring, start of fall, middle of fall, and end of fall. ## Sharing/Access information All functions regarding the extraction of seasonal transition dates can be found here: * All parameters and associated functions regarding the SnowModel can be found here: * All original meteorological data in this study is from: *

Climate change has had a significant impact on the seasonal transition dates of Arctic tundra ecosystems, causing diverse variations between distinct land surface classes. However, the combined effect of multiple controls as well as their individual effects on these dates remains unclear at various scales and across diverse land surface classes. Here we quantified spatiotemporal variations of three seasonal transition dates (start of spring, maximum Normalized Difference Vegetation Index (NDVImax) day, end of fall) for five dominant land surface classes in the ice-free Greenland and analyzed their drivers for current and future climate scenarios, respectively.

Keywords

Arctic ecosystems, Climate change, land surface phenology, snow cover, FOS: Natural sciences, vegetation index

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research