Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2024
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Plant canopies promote climatic disequilibrium in Mediterranean recruit communities

Authors: Pérez-Navarro, María Ángeles;

Data from: Plant canopies promote climatic disequilibrium in Mediterranean recruit communities

Abstract

This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts.

Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.

Related Organizations
Keywords

plant community assembly, recruitment, climatic debt, establishment, recruit-canopy interactions, Climate change, FOS: Earth and related environmental sciences, climatic bonus, climatic lag, facilitation, climatic disequilibrium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research