Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2020
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

Data from: Increasing dependence of lowland populations on mountain water resources

Authors: orcid bw Viviroli, Daniel;
Viviroli, Daniel
ORCID
Derived by OpenAIRE algorithms or harvested from 3rd party repositories

Viviroli, Daniel in OpenAIRE
Kummu, Matti; Meybeck, Michel; Kallio, Marko; Wada, Yoshihide;

Data from: Increasing dependence of lowland populations on mountain water resources

Abstract

Water resources index W quantifies the potential dependence of the world's lowland areas on water resources originating in mountain areas upstream. The data cover the timeframe from the 1960s (1961–1970) to the 2040s (2041–2050) in decadal steps. Data for projections from the 2010s onwards are available for three scenario pathways (SSP1-RCP4.5, SSP2-RCP6.0, SSP3-RCP6.0) and show median results from 5 CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1‑M). The files are GeoTIFF formatted and in a regular raster of 5’×5’ (arc minutes in WGS 1984 coordinate system) The values of W can be classified using the following ranges: W ≤ -2 → Essential but vastly insufficient -2 < W < -1 → Essential but insufficient -1 ≤ W < 0 → Essential and sufficient W = 0 → No surplus from mountains 0 < W ≤ 1 → Supportive 1 < W < 2 → Minor W ≥ 2 → Negligible The values of W are rounded to four decimal places and limited to a range of -1110 to 9998. Values falling outside of that range are set to the nearest limit. he following flag values apply to W: -5555 indicates that there is no water balance surplus from the mountain area upstream, but a lowland water balance surplus; -6666 indicates that there is no water balance surplus from the mountain area upstream, and a lowland water balance deficit. Mountain areas and oceans are NODATA, large ice shields are omitted (Greenland: NODATA, Antarctica: not covered in extent).

Mountain areas provide disproportionally high runoff in many parts of the world, and here we quantify for the first time their importance for water resources and food production from the viewpoint of the lowland areas downstream. The dataset maps the degree to which lowland areas potentially depend on runoff contributions from mountain areas (39% of land mass) between the 1960s and the 2040s.

Keywords

lowland areas, Water resources, climate change, water towers, Anthropocene, water resources, highland-lowland systems, global change, Mountain areas, Projections

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
25
2