Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GTSM-ERA5-E dataset - Data underlying the paper "Global dataset of storm surges and extreme sea levels for 1950-2022 based on the ERA5 climate reanalysis"

Authors: Muis, Sanne; Aleksandrova, Natalia; Veenstra, Jelmer; Gwee, Robyn;

GTSM-ERA5-E dataset - Data underlying the paper "Global dataset of storm surges and extreme sea levels for 1950-2022 based on the ERA5 climate reanalysis"

Abstract

Extreme sea levels, generated by storm surges and high tides, have the potential to cause coastal flooding and erosion. Global datasets are instrumental for mapping of extreme sea levels and associated societal risks. Harnessing the backward extension of the ERA5 reanalysis, we present a dataset containing timeseries of water levels based on a global hydrodynamic model covering the period 1950-2022. This is an extension of a previously published dataset for 1979-2018 (Muis et al. 2020). Using the extended ERA5 dataset, we calculate daily maxima timeseries, statistical percentiles and estimate extreme sea levels for various return periods globally. Validation shows that there is a good agreement between observed and modelled sea levels, with the level of agreement being very similar to that of the previously published dataset. The extended 73-year dataset allows for a more robust estimation of extremes, often resulting in smaller uncertainties than its 40-year precursor. The present dataset can be used for assessing flood risk, climate variability and climate changes. The background of this dataset is described in the corresponding paper (Aleksandrova et al. 2024, paper currently under review).

Related Organizations
Keywords

climate change, storm surge, extreme sea levels, sea-level rise, global modelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research