Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Harvesting Using a Nonlinear Resonator with Asymmetric Potential Wells

Authors: Litak, Grzegorz; Wolszczak, Piotr; Caban, Jacek; Margielewicz, Jerzy; Gąska, Damian; Xiaoqing, Ma; Zhou, Shengxi;

Energy Harvesting Using a Nonlinear Resonator with Asymmetric Potential Wells

Abstract

data_05_d_000.csv - Curve of the RMS values of voltage induced on piezoelectric electrodes for p = 0.183 and randomly selected initial conditions δ = 0.0, κ = 0.5. data_05_d_015.csv - Curve of the RMS values of voltage induced on piezoelectric electrodes for p = 0.183 and randomly selected initial conditions δ = 0.15, κ = 0.5. data_05_d_030.csv - Curve of the RMS values of voltage induced on piezoelectric electrodes for p = 0.183 and randomly selected initial conditions δ = 0.3, κ = 0.5. data_05_d_060.csv - Curve of the RMS values of voltage induced on piezoelectric electrodes for p = 0.183 and randomly selected initial conditions δ = 0.6, κ = 0.5. data_06r_o_19.csv - The orbits of the periodic solutions presented in Fig. 6(a) ω = 1.9, Poincaré points = 2. data_06b_o_19.csv - The orbits of the periodic solutions presented in Fig. 6(a) ω = 1.9, Poincaré points = 3. data_06r_o_21.csv - The orbits of the periodic solutions presented in Fig. 6(b) ω = 2.1, Poincaré points = 2. data_06g_o_21.csv - The orbits of the periodic solutions presented in Fig. 6(b) ω = 2.1, Poincaré points = 3. data_06b_o_21.csv - The orbits of the periodic solutions presented in Fig. 6(b) ω = 2.1, Poincaré points = 9. data_06r_o_26.csv - The orbits of the periodic solutions presented in Fig. 6(c) ω = 2.6, Poincaré points = 2. data_06b_o_26.csv - The orbits of the periodic solutions presented in Fig. 6(c) ω = 2.6, Poincaré points = 3. data_06g_o_26.csv - The orbits of the periodic solutions presented in Fig. 6(c) ω = 2.6, Poincaré points = 6. data_06r_o_38.csv - The orbits of the periodic solutions presented in Fig. 6(d) ω = 3.8, Poincaré points = 3. data_06b_o_38.csv - The orbits of the periodic solutions presented in Fig. 6(d) ω = 3.8, Poincaré points = 4. data_06g_o_38.csv - The orbits of the periodic solutions presented in Fig. 6(d) ω = 3.8, Poincaré points = 5. data_06lb_o_38.csv - The orbits of the periodic solutions presented in Fig. 6(d) ω = 3.8, Poincaré points = 7. data_06p_o_38.csv - The orbits of the periodic solutions presented in Fig. 6(d) ω = 3.8, Poincaré points = 9. data_07b_d_015.csv - Numerical results showing the influence of potential asymmetry on the probability of occurrence of particular solutions for δ = 0.15. data_07g_d_030.csv - Numerical results showing the influence of potential asymmetry on the probability of occurrence of particular solutions for δ = 0.30. data_07lb_d_06.csv - Numerical results showing the influence of potential asymmetry on the probability of occurrence of particular solutions for δ = 0.60. data_07r_d_000.csv - Numerical results showing the influence of potential asymmetry on the probability of occurrence of particular solutions for δ = 0.0.

This repository contains the results of numerical simulations of a nonlinear bistable system for harvesting energy from ambient vibrating mechanical sources. Detailed model tests were carried out on an inertial energy harvesting system consisting of a piezoelectric beam with additional springs attached. The mathematical model was derived using the bond graph approach. Depending on the spring selection, the shape of the bistable potential wells was modified including the removal of wells’ degeneration. Consequently, the broken mirror symmetry between the potential wells led to additional solutions with corresponding voltage responses. The probability of occurrence for different high voltage/large orbit solutions with changes in potential symmetry was investigated. In particular, the periodicity of different solutions with respect to the harmonic excitation period were studied and compared in terms of the voltage output. The results showed that a large orbit period-6 subharmonic solution could be stabilized while some higher subharmonic solutions disappeared with the increasing asymmetry of potential wells. Changes in frequency ranges were also observed for chaotic solutions.

Keywords

energy harvesting, vibrations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research